Contents
Using This Manual
The Contents of This Manual
The Contents of the Other Manuals
Typographical Conventions
Mathematical Conventions
Technical Support
Contacting Technical Support
1. Starting and Executing
ANSYS FLUENT
1.1 Starting
ANSYS FLUENT
1.1.1 Single-Precision and Double-Precision Solvers
1.1.2 Starting
ANSYS FLUENT
Using
FLUENT Launcher
1.1.3 Starting
ANSYS FLUENT
on a Windows System
1.1.4 Starting
ANSYS FLUENT
on a Linux/UNIX System
1.1.5 Command Line Startup Options
1.1.6 Remote Simulation Facility (RSF)
1.2 Running
ANSYS FLUENT
in Batch Mode
1.2.1 Background Execution on Linux/UNIX Systems
1.2.2 Background Execution on Windows Systems
1.2.3 Batch Execution Options
1.3 Checkpointing an
ANSYS FLUENT
Simulation
1.4 Cleaning Up Processes From an
ANSYS FLUENT
Simulation
1.5 Exiting the Program
2. Graphical User Interface (GUI)
2.1 GUI Components
2.1.1 The Menu Bar
2.1.2 Toolbars
2.1.3 The Navigation Pane
2.1.4 Task Pages
2.1.5 The Console
2.1.6 Dialog Boxes
2.1.7 Graphics Windows
2.2 Customizing the Graphical User Interface (UNIX Systems Only)
2.3 Using the GUI Help System
2.3.1 Task Page and Dialog Box Help
2.3.2 Context-Sensitive Help (UNIX Only)
2.3.3 Opening the User's Guide Table of Contents
2.3.4 Opening the User's Guide Index
2.3.5 Opening the Reference Guide
2.3.6 Help on Help
2.3.7 Help for Text Interface Commands
2.3.8 Accessing the Other Manuals
2.3.9 Accessing the User Services Center Web Site
2.3.10 Accessing the Online Technical Support Web Site
2.3.11 Obtaining a Listing of Other
ANSYS FLUENT
License Users
2.3.12 Version and Release Information
3. Text User Interface (TUI)
3.1 Text Menu System
3.1.1 Command Abbreviation
3.1.2 Command Line History
3.1.3 Scheme Evaluation
3.1.4 Aliases
3.2 Text Prompt System
3.2.1 Numbers
3.2.2 Booleans
3.2.3 Strings
3.2.4 Symbols
3.2.5 Filenames
3.2.6 Lists
3.2.7 Evaluation
3.2.8 Default Value Binding
3.3 Interrupts
3.4 System Commands
3.4.1 System Commands for UNIX-based Operating Systems
3.4.2 System Commands for Windows Operating Systems
3.5 Text Menu Input from Character Strings
3.6 Using the Text Interface Help System
4. Reading and Writing Files
4.1 Shortcuts for Reading and Writing Files
4.1.1 Default File Suffixes
4.1.2 Binary Files
4.1.3 Detecting File Format
4.1.4 Recent File List
4.1.5 Reading and Writing Compressed Files
4.1.6 Tilde Expansion (Linux/UNIX Systems Only)
4.1.7 Automatic Numbering of Files
4.1.8 Disabling the Overwrite Confirmation Prompt
4.1.9 Toolbar Buttons
4.2 Reading Mesh Files
4.2.1 Reading
TGrid
Mesh Files
4.2.2 Reading Surface Meshes
4.2.3 Reading
GAMBIT
and
GeoMesh
Mesh Files
4.2.4 Reading
PreBFC
Unstructured Mesh Files
4.3 Reading and Writing Case and Data Files
4.3.1 Reading and Writing Case Files
4.3.2 Reading and Writing Data Files
4.3.3 Reading and Writing Case and Data Files Together
4.3.4 Automatic Saving of Case and Data Files
4.4 Reading and Writing Parallel Data Files
4.5 Reading
FLUENT/UNS
and
RAMPANT
Case and Data Files
4.6 Reading and Writing Profile Files
4.7 Reading and Writing Boundary Conditions
4.8 Writing a Boundary Mesh
4.9 Reading Scheme Source Files
4.10 Creating and Reading Journal Files
4.10.1 Procedure
4.11 Creating Transcript Files
4.12 Importing Files
4.12.1
ABAQUS
Files
4.12.2
Mechanical APDL
Files
4.12.3
ANSYS CFX
Files
4.12.4 Meshes and Data in
CGNS
Format
4.12.5
EnSight
Files
4.12.6
ANSYS FIDAP
Neutral Files
4.12.7
GAMBIT
and
GeoMesh
Mesh Files
4.12.8
HYPERMESH ASCII
Files
4.12.9
IC3M
Files
4.12.10
I-deas
Universal
Files
4.12.11
LSTC
Files
4.12.12
Marc POST
Files
4.12.13
NASTRAN
Files
4.12.14
PATRAN
Neutral
Files
4.12.15
PLOT3D
Files
4.12.16
PTC Mechanica Design
Files
4.12.17
Tecplot
Files
4.12.18
FLUENT 4
Case Files
4.12.19
PreBFC
Files
4.12.20 Partition Files
4.12.21 CHEMKIN Mechanism
4.13 Exporting Solution Data
4.14 Exporting Solution Data after a Calculation
4.14.1
ABAQUS
Files
4.14.2
Mechanical APDL
Files
4.14.3
Mechanical APDL Input
Files
4.14.4
ASCII
Files
4.14.5
AVS
Files
4.14.6
ANSYS CFD-Post
-Compatible Files
4.14.7
CGNS
Files
4.14.8
Data Explorer
Files
4.14.9
EnSight Case Gold
Files
4.14.10
FAST
Files
4.14.11
FAST Solution
Files
4.14.12
Fieldview Unstructured
Files
4.14.13
I-deas
Universal
Files
4.14.14
NASTRAN
Files
4.14.15
PATRAN
Files
4.14.16
RadTherm
Files
4.14.17
Tecplot
Files
4.15 Exporting Steady-State Particle History Data
4.16 Exporting Data During a Transient Calculation
4.16.1 Creating Automatic Export Definitions for Solution Data
4.16.2 Creating Automatic Export Definitions for Particle History Data
4.17 Exporting to CFD-Post
4.18 Managing Solution Files
4.19 Mesh-to-Mesh Solution Interpolation
4.19.1 Performing Mesh-to-Mesh Solution Interpolation
4.19.2 Format of the Interpolation File
4.20 Mapping Data for Fluid-Structure Interaction (FSI) Applications
4.20.1 FEA File Formats
4.20.2 Using the FSI Mapping Dialog Boxes
4.21 Saving Picture Files
4.21.1 Using the
Save Picture
Dialog Box
4.22 Setting Data File Quantities
4.23 The
.fluent
File
5. Unit Systems
5.1 Restrictions on Units
5.2 Units in Mesh Files
5.3 Built-In Unit Systems in
ANSYS FLUENT
5.4 Customizing Units
6. Reading and Manipulating Meshes
6.1 Mesh Topologies
6.1.1 Examples of Acceptable Mesh Topologies
6.1.2 Face-Node Connectivity in
ANSYS FLUENT
6.1.3 Choosing the Appropriate Mesh Type
6.2 Mesh Requirements and Considerations
6.2.1 Geometry/Mesh Requirements
6.2.2 Mesh Quality
6.3 Mesh Import
6.3.1
GAMBIT
Mesh Files
6.3.2
GeoMesh
Mesh Files
6.3.3
TGrid
Mesh Files
6.3.4
PreBFC
Mesh Files
6.3.5
ICEM CFD
Mesh Files
6.3.6
I-deas
Universal
Files
6.3.7
NASTRAN
Files
6.3.8
PATRAN
Neutral
Files
6.3.9
Mechanical APDL
Files
6.3.10
ANSYS CFX
Files
6.3.11 Using the
fe2ram
Filter to Convert Files
6.3.12
FLUENT/UNS
and
RAMPANT
Case Files
6.3.13
FLUENT 4
Case Files
6.3.14
ANSYS FIDAP
Neutral Files
6.3.15 Reading Multiple Mesh/Case/Data Files
6.3.16 Reading Surface Mesh Files
6.4 Non-Conformal Meshes
6.4.1 Non-Conformal Mesh Calculations
6.4.2 Non-Conformal Interface Algorithm
6.4.3 Requirements and Limitations of Non-Conformal Meshes
6.4.4 Using a Non-Conformal Mesh in
ANSYS FLUENT
6.5 Checking the Mesh
6.5.1 Mesh Check Information
6.5.2 Repairing Face Handedness and Node Order
6.5.3 Repairing Duplicate Shadow Nodes
6.6 Reporting Mesh Statistics
6.6.1 Mesh Size
6.6.2 Memory Usage
6.6.3 Mesh Zone Information
6.6.4 Partition Statistics
6.7 Converting the Mesh to a Polyhedral Mesh
6.7.1 Converting the Domain to a Polyhedra
6.7.2 Converting Skewed Cells to Polyhedra
6.8 Modifying the Mesh
6.8.1 Merging Zones
6.8.2 Separating Zones
6.8.3 Fusing Face Zones
6.8.4 Creating Conformal Periodic Zones
6.8.5 Slitting Periodic Zones
6.8.6 Slitting Face Zones
6.8.7 Orienting Face Zones
6.8.8 Extruding Face Zones
6.8.9 Replacing, Deleting, Deactivating, and Activating Zones
6.8.10 Reordering the Domain and Zones
6.8.11 Scaling the Mesh
6.8.12 Translating the Mesh
6.8.13 Rotating the Mesh
7. Cell Zone and Boundary Conditions
7.1 Overview
7.1.1 Available Cell Zone and Boundary Types
7.1.2 The
Cell Zone
and
Boundary Conditions
Task Page
7.1.3 Changing Cell and Boundary Zone Types
7.1.4 Setting Cell Zone and Boundary Conditions
7.1.5 Copying Cell Zone and Boundary Conditions
7.1.6 Changing Cell or Boundary Zone Names
7.1.7 Defining Non-Uniform Cell Zones and Boundary Conditions
7.1.8 Defining Transient Cell Zone and Boundary Conditions
7.1.9 Defining and Viewing Parameters
7.1.10 Selecting Cell or Boundary Zones in the Graphics Display
7.1.11 Operating and Periodic Conditions
7.1.12 Saving and Reusing Cell Zone and Boundary Conditions
7.2 Cell Zone Conditions
7.2.1 Fluid Conditions
7.2.2 Solid Conditions
7.2.3 Porous Media Conditions
7.2.4 Fixing the Values of Variables
7.2.5 Defining Mass, Momentum, Energy, and Other Sources
7.3 Boundary Conditions
7.3.1 Flow Inlet and Exit Boundary Conditions
7.3.2 Using Flow Boundary Conditions
7.3.3 Pressure Inlet Boundary Conditions
7.3.4 Velocity Inlet Boundary Conditions
7.3.5 Mass Flow Inlet Boundary Conditions
7.3.6 Inlet Vent Boundary Conditions
7.3.7 Intake Fan Boundary Conditions
7.3.8 Pressure Outlet Boundary Conditions
7.3.9 Pressure Far-Field Boundary Conditions
7.3.10 Inputs at Pressure Far-Field Boundaries
7.3.11 Outflow Boundary Conditions
7.3.12 Outlet Vent Boundary Conditions
7.3.13 Exhaust Fan Boundary Conditions
7.3.14 Wall Boundary Conditions
7.3.15 Symmetry Boundary Conditions
7.3.16 Periodic Boundary Conditions
7.3.17 Axis Boundary Conditions
7.3.18 Fan Boundary Conditions
7.3.19 Radiator Boundary Conditions
7.3.20 Porous Jump Boundary Conditions
7.4 Non-Reflecting Boundary Conditions
7.4.1 Turbo-Specific Non-Reflecting Boundary Conditions
7.4.2 General Non-Reflecting Boundary Conditions
7.5 User-Defined Fan Model
7.5.1 Steps for Using the User-Defined Fan Model
7.5.2 Example of a User-Defined Fan
7.6 Profiles
7.6.1 Profile Specification Types
7.6.2 Profile File Format
7.6.3 Using Profiles
7.6.4 Reorienting Profiles
7.7 Coupling Boundary Conditions with GT-Power
7.7.1 Requirements and Restrictions
7.7.2 User Inputs
7.8 Coupling Boundary Conditions with WAVE
7.8.1 Requirements and Restrictions
7.8.2 User Inputs
8. Physical Properties
8.1 Defining Materials
8.1.1 Material Types and Databases
8.1.2 Using the
Materials
Task Page
8.1.3 Using a User-Defined Materials Database
8.2 Defining Properties Using Temperature-Dependent Functions
8.2.1 Inputs for Polynomial Functions
8.2.2 Inputs for Piecewise-Linear Functions
8.2.3 Inputs for Piecewise-Polynomial Functions
8.2.4 Checking and Modifying Existing Profiles
8.3 Density
8.3.1 Defining Density for Various Flow Regimes
8.3.2 Input of Constant Density
8.3.3 Inputs for the Boussinesq Approximation
8.3.4 Density as a Profile Function of Temperature
8.3.5 Incompressible Ideal Gas Law
8.3.6 Ideal Gas Law for Compressible Flows
8.3.7 Composition-Dependent Density for Multicomponent Mixtures
8.4 Viscosity
8.4.1 Input of Constant Viscosity
8.4.2 Viscosity as a Function of Temperature
8.4.3 Defining the Viscosity Using Kinetic Theory
8.4.4 Composition-Dependent Viscosity for Multicomponent Mixtures
8.4.5 Viscosity for Non-Newtonian Fluids
8.5 Thermal Conductivity
8.5.1 Constant Thermal Conductivity
8.5.2 Thermal Conductivity as a Function of Temperature
8.5.3 Thermal Conductivity Using Kinetic Theory
8.5.4 Composition-Dependent Thermal Conductivity for Multicomponent Mixtures
8.5.5 Anisotropic Thermal Conductivity for Solids
8.6 User-Defined Scalar (UDS) Diffusivity
8.6.1 Isotropic Diffusion
8.6.2 Anisotropic Diffusion
8.6.3 User-Defined Anisotropic Diffusivity
8.7 Specific Heat Capacity
8.7.1 Input of Constant Specific Heat Capacity
8.7.2 Specific Heat Capacity as a Function of Temperature
8.7.3 Defining Specific Heat Capacity Using Kinetic Theory
8.7.4 Specific Heat Capacity as a Function of Composition
8.8 Radiation Properties
8.8.1 Absorption Coefficient
8.8.2 Scattering Coefficient
8.8.3 Refractive Index
8.8.4 Reporting the Radiation Properties
8.9 Mass Diffusion Coefficients
8.9.1 Fickian Diffusion
8.9.2 Full Multicomponent Diffusion
8.9.3 Thermal Diffusion Coefficients
8.9.4 Mass Diffusion Coefficient Inputs
8.9.5 Mass Diffusion Coefficient Inputs for Turbulent Flow
8.10 Standard State Enthalpies
8.11 Standard State Entropies
8.12 Molecular Heat Transfer Coefficient
8.13 Kinetic Theory Parameters
8.14 Operating Pressure
8.14.1 The Effect of Numerical Roundoff on Pressure Calculation in Low-Mach-Number Flow
8.14.2 Operating Pressure, Gauge Pressure, and Absolute Pressure
8.14.3 Setting the Operating Pressure
8.15 Reference Pressure Location
8.15.1 Actual Reference Pressure Location
8.16 Real Gas Models
8.16.1 The Aungier-Redlich-Kwong Real Gas Model
8.16.2 The NIST Real Gas Models
8.16.3 The User-Defined Real Gas Model
9. Modeling Basic Fluid Flow
9.1 User-Defined Scalar (UDS) Transport Equations
9.1.1 Introduction
9.1.2 UDS Theory
9.1.3 Setting Up UDS Equations in
ANSYS FLUENT
9.2 Periodic Flows
9.2.1 Overview and Limitations
9.2.2 User Inputs for the Pressure-Based Solver
9.2.3 User Inputs for the Density-Based Solvers
9.2.4 Monitoring the Value of the Pressure Gradient
9.2.5 Postprocessing for Streamwise-Periodic Flows
9.3 Swirling and Rotating Flows
9.3.1 Overview of Swirling and Rotating Flows
9.3.2 Turbulence Modeling in Swirling Flows
9.3.3 Mesh Setup for Swirling and Rotating Flows
9.3.4 Modeling Axisymmetric Flows with Swirl or Rotation
9.4 Compressible Flows
9.4.1 When to Use the Compressible Flow Model
9.4.2 Physics of Compressible Flows
9.4.3 Modeling Inputs for Compressible Flows
9.4.4 Floating Operating Pressure
9.4.5 Solution Strategies for Compressible Flows
9.4.6 Reporting of Results for Compressible Flows
9.5 Inviscid Flows
9.5.1 Setting Up an Inviscid Flow Model
9.5.2 Solution Strategies for Inviscid Flows
9.5.3 Postprocessing for Inviscid Flows
10. Modeling Flows with Rotating Reference Frames
10.1 Introduction
10.2 Flow in a Rotating Reference Frame
10.2.1 Overview
10.3 Flow in Multiple Rotating Reference Frames
10.3.1 The Multiple Reference Frame Model
10.3.2 The Mixing Plane Model
10.4 Mesh Setup for a Single Rotating Reference Frame
10.5 Mesh Setup for a Multiple Rotating Reference Frame
10.6 Steps in Using Rotating Reference Frames
10.7 Setting Up a Single Rotating Reference Frame Problem
10.7.1 Choosing the Relative or Absolute Velocity Formulation
10.8 Solution Strategies for a Single Rotating Reference Frame
10.8.1 Gradual Increase of the Rotational Speed to Improve Solution Stability
10.9 Postprocessing for a Single Rotating Reference Frame
10.10 Setting Up a Multiple Rotating Reference Frame Problem
10.10.1 Setting Up Multiple Reference Frames
10.10.2 Setting Up the Mixing Plane Model
10.11 Solution Strategies for MRF and Mixing Plane Problems
10.11.1 MRF Model
10.11.2 Mixing Plane Model
10.12 Postprocessing for MRF and Mixing Plane Problems
11. Modeling Flows Using Sliding and Deforming Meshes
11.1 Introduction
11.2 Using Sliding Meshes
11.2.1 Requirements and Constraints
11.2.2 Setting Up the Sliding Mesh Problem
11.2.3 Solution Strategies for Sliding Meshes
11.2.4 Postprocessing for Sliding Meshes
11.3 Using Dynamic Meshes
11.3.1 Setting Dynamic Mesh Modeling Parameters
11.3.2 Dynamic Mesh Update Methods
11.3.3 Volume Mesh Update Procedure
11.3.4 Solid-Body Kinematics
11.3.5 Steady-State Dynamic Mesh Applications
11.3.6 Setting In-Cylinder Parameters
11.3.7 Six DOF Solver Settings
11.3.8 Defining Dynamic Mesh Events
11.3.9 Specifying the Motion of Dynamic Zones
11.3.10 Previewing the Dynamic Mesh
12. Modeling Turbulence
12.1 Introduction
12.2 Choosing a Turbulence Model
12.2.1 Computational Effort: CPU Time and Solution Behavior
12.3 Mesh Considerations for Turbulent Flow Simulations
12.3.1 Near-Wall Mesh Guidelines
12.4 Steps in Using a Turbulence Model
12.5 Setting Up the Spalart-Allmaras Model
12.6 Setting Up the
-
Model
12.6.1 Setting Up the Standard or Realizable
-
Model
12.6.2 Setting Up the RNG
-
Model
12.7 Setting Up the
-
Model
12.7.1 Setting Up the Standard
-
Model
12.7.2 Setting Up the Shear-Stress Transport
-
Model
12.8 Setting Up the Transition
-
-
Model
12.9 Setting Up the Transition SST Model
12.10 Setting Up the Reynolds Stress Model
12.11 Setting Up the Detached Eddy Simulation Model
12.11.1 Setting Up the Spalart-Allmaras DES Model
12.11.2 Setting Up the Realizable
-
DES Model
12.11.3 Setting Up the SST
-
DES Model
12.12 Setting Up the Large Eddy Simulation Model
12.13 Setup Options for all Turbulence Modeling
12.13.1 Including the Viscous Heating Effects
12.13.2 Including Turbulence Generation Due to Buoyancy
12.13.3 Vorticity- and Strain/Vorticity-Based Production
12.13.4 Delayed Detached Eddy Simulation (DDES)
12.13.5 Differential Viscosity Modification
12.13.6 Swirl Modification
12.13.7 Low-Re Corrections
12.13.8 Low-Re Damping
12.13.9 Shear Flow Corrections
12.13.10 Including Pressure Gradient Effects
12.13.11 Including Thermal Effects
12.13.12 Including the Wall Reflection Term
12.13.13 Solving the
Equation to Obtain Wall Boundary Conditions
12.13.14 Quadratic Pressure-Strain Model
12.13.15 Low-Re Stress-Omega Pressure-Strain
12.13.16 Subgrid-Scale Model
12.13.17 Customizing the Turbulent Viscosity
12.13.18 Customizing the Turbulent Prandtl and Schmidt Numbers
12.13.19 Modeling Turbulence with Non-Newtonian Fluids
12.13.20 SST Functions for the SST Detached Eddy Simulation Model
12.14 Defining Turbulence Boundary Conditions
12.14.1 The Spalart-Allmaras Model
12.14.2
-
Models and
-
Models
12.14.3 Reynolds Stress Model
12.14.4 Large Eddy Simulation Model
12.15 Providing an Initial Guess for
and
(or
and
)
12.16 Solution Strategies for Turbulent Flow Simulations
12.16.1 Mesh Generation
12.16.2 Accuracy
12.16.3 Convergence
12.16.4 RSM-Specific Solution Strategies
12.16.5 LES-Specific Solution Strategies
12.17 Postprocessing for Turbulent Flows
12.17.1 Custom Field Functions for Turbulence
12.17.2 Postprocessing Turbulent Flow Statistics
12.17.3 Troubleshooting
13. Modeling Heat Transfer
13.1 Introduction
13.2 Modeling Conductive and Convective Heat Transfer
13.2.1 Steps in Solving Heat Transfer Problems
13.2.2 Solution Strategies for Heat Transfer Modeling
13.2.3 Postprocessing Heat Transfer Quantities
13.2.4 Natural Convection and Buoyancy-Driven Flows
13.2.5 Shell Conduction Considerations
13.3 Modeling Radiation
13.3.1 Steps in Using the Radiation Models
13.3.2 Setting Up the DTRM
13.3.3 Setting Up the S2S Model
13.3.4 Setting Up the DO Model
13.3.5 Defining Material Properties for Radiation
13.3.6 Defining Boundary Conditions for Radiation
13.3.7 Solution Strategies for Radiation Modeling
13.3.8 Postprocessing Radiation Quantities
13.3.9 Solar Load Model
13.4 Modeling Periodic Heat Transfer
13.4.1 Overview and Limitations
13.4.2 Theory
13.4.3 Steps in Using Periodic Heat Transfer
13.4.4 Solution Strategies for Periodic Heat Transfer
13.4.5 Monitoring Convergence
13.4.6 Postprocessing for Periodic Heat Transfer
14. Modeling Heat Exchangers
14.1 Overview and Restrictions of the Macro Heat Exchanger Models
14.1.1 Restrictions
14.2 Overview and Restrictions of the Dual Cell Model
14.2.1 Restrictions
14.3 Using the Ungrouped Macro Heat Exchanger Model
14.3.1 Selecting the Zone for the Heat Exchanger
14.3.2 Specifying Heat Exchanger Performance Data
14.3.3 Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions
14.3.4 Defining the Macros
14.3.5 Specifying the Auxiliary Fluid Properties and Conditions
14.3.6 Setting the Pressure-Drop Parameters and Effectiveness
14.4 Using the Grouped Macro Heat Exchanger Model
14.4.1 Selecting the Fluid Zones for the Heat Exchanger Group
14.4.2 Selecting the Upstream Heat Exchanger Group
14.4.3 Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions
14.4.4 Specifying the Auxiliary Fluid Properties
14.4.5 Specifying Supplementary Auxiliary Fluid Streams
14.4.6 Initializing the Auxiliary Fluid Temperature
14.5 Using the Dual Cell Heat Exchanger Model
14.6 Postprocessing for the Heat Exchanger Model
14.6.1 Total Heat Rejection Rate
14.6.2 Heat Exchanger Reporting
15. Modeling Species Transport and Finite-Rate Chemistry
15.1 Volumetric Reactions
15.1.1 Overview of User Inputs for Modeling Species Transport and Reactions
15.1.2 Enabling Species Transport and Reactions and Choosing the Mixture Material
15.1.3 Defining Properties for the Mixture and Its Constituent Species
15.1.4 Setting up Coal Simulations with the Coal Calculator Dialog Box
15.1.5 Defining Cell Zone and Boundary Conditions for Species
15.1.6 Defining Other Sources of Chemical Species
15.1.7 Solution Procedures for Chemical Mixing and Finite-Rate Chemistry
15.1.8 Postprocessing for Species Calculations
15.1.9 Importing a Volumetric Kinetic Mechanism in CHEMKIN Format
15.2 Wall Surface Reactions and Chemical Vapor Deposition
15.2.1 Overview of Surface Species and Wall Surface Reactions
15.2.2 User Inputs for Wall Surface Reactions
15.2.3 Including Mass Transfer To Surfaces in Continuity
15.2.4 Wall Surface Mass Transfer Effects in the Energy Equation
15.2.5 Modeling the Heat Release Due to Wall Surface Reactions
15.2.6 Solution Procedures for Wall Surface Reactions
15.2.7 Postprocessing for Surface Reactions
15.2.8 Importing a Surface Kinetic Mechanism in CHEMKIN Format
15.3 Particle Surface Reactions
15.3.1 User Inputs for Particle Surface Reactions
15.3.2 Modeling Gaseous Solid Catalyzed Reactions
15.3.3 Using the Multiple Surface Reactions Model for Discrete-Phase Particle Combustion
15.4 Species Transport Without Reactions
16. Modeling Non-Premixed Combustion
16.1 Steps in Using the Non-Premixed Model
16.1.1 Preliminaries
16.1.2 Defining the Problem Type
16.1.3 Overview of the Problem Setup Procedure
16.2 Setting Up the Equilibrium Chemistry Model
16.2.1 Choosing Adiabatic or Non-Adiabatic Options
16.2.2 Specifying the Operating Pressure for the System
16.2.3 Enabling a Secondary Inlet Stream
16.2.4 Choosing to Define the Fuel Stream(s) Empirically
16.2.5 Enabling the Rich Flammability Limit (RFL) Option
16.3 Setting Up the Steady and Unsteady Laminar Flamelet Models
16.3.1 Choosing Adiabatic or Non-Adiabatic Options
16.3.2 Specifying the Operating Pressure for the System
16.3.3 Specifying a Chemical Mechanism File for Flamelet Generation
16.3.4 Importing a Flamelet
16.3.5 Using the Unsteady Laminar Flamelet Model
16.3.6 Using the Diesel Unsteady Laminar Flamelet Model
16.4 Defining the Stream Compositions
16.4.1 Setting Boundary Stream Species
16.4.2 Modifying the Database
16.4.3 Composition Inputs for Empirically-Defined Fuel Streams
16.4.4 Modeling Liquid Fuel Combustion Using the Non-Premixed Model
16.4.5 Modeling Coal Combustion Using the Non-Premixed Model
16.5 Setting Up Control Parameters
16.5.1 Forcing the Exclusion and Inclusion of Equilibrium Species
16.5.2 Defining the Flamelet Controls
16.5.3 Zeroing Species in the Initial Unsteady Flamelet
16.6 Calculating the Flamelets
16.6.1 Steady Flamelet
16.6.2 Unsteady Flamelet
16.6.3 Saving the Flamelet Data
16.6.4 Postprocessing the Flamelet Data
16.7 Calculating the Look-Up Tables
16.7.1 Full Tabulation of the Two-Mixture-Fraction Model
16.7.2 Stability Issues in Calculating Chemical Equilibrium Look-Up Tables
16.7.3 Saving the Look-Up Tables
16.7.4 Postprocessing the Look-Up Table Data
16.7.5 Setting Up the Inert Model
16.8 Defining Non-Premixed Boundary Conditions
16.8.1 Input of Mixture Fraction Boundary Conditions
16.8.2 Diffusion at Inlets
16.8.3 Input of Thermal Boundary Conditions and Fuel Inlet Velocities
16.9 Defining Non-Premixed Physical Properties
16.10 Solution Strategies for Non-Premixed Modeling
16.10.1 Single-Mixture-Fraction Approach
16.10.2 Two-Mixture-Fraction Approach
16.10.3 Starting a Non-Premixed Calculation From a Previous Case File
16.10.4 Solving the Flow Problem
16.11 Postprocessing the Non-Premixed Model Results
16.11.1 Postprocessing for Inert Calculations
17. Modeling Premixed Combustion
17.1 Overview and Limitations
17.1.1 Overview
17.1.2 Limitations
17.2 Using the Premixed Combustion Model
17.2.1 Enabling the Premixed Combustion Model
17.2.2 Choosing an Adiabatic or Non-Adiabatic Model
17.3 Setting Up the Zimont Turbulent Flame Model
17.3.1 Modifying the Constants for the Zimont Premixed Combustion Model
17.3.2 Defining Physical Properties for the Unburnt Mixture
17.3.3 Setting Boundary Conditions for the Progress Variable
17.3.4 Initializing the Progress Variable
17.4 Setting Up the Extended Coherent Flame Model
17.4.1 Modifying the Constants for the ECFM Flame Speed Closure
17.4.2 Setting Boundary Conditions for the ECFM Transport
17.4.3 Initializing the Flame Area Density
17.5 Postprocessing for Premixed Combustion Calculations
18. Modeling Partially Premixed Combustion
18.1 Overview and Limitations
18.1.1 Overview
18.1.2 Limitations
18.2 Using the Partially Premixed Combustion Model
18.2.1 Setup and Solution Procedure
18.2.2 Modifying the Unburnt Mixture Property Polynomials
19. Modeling a Composition PDF Transport Problem
19.1 Overview and Limitations
19.2 Steps for Using the Composition PDF Transport Model
19.3 Enabling the Lagrangian Composition PDF Transport Model
19.3.1 Setting Integration Parameters
19.4 Enabling the Eulerian Composition PDF Transport Model
19.4.1 Defining Species Boundary Conditions
19.5 Initializing the Solution
19.6 Monitoring the Solution
19.6.1 Monitoring ISAT
19.6.2 Using ISAT Efficiently
19.6.3 Reading and Writing ISAT Tables in Parallel
19.6.4 Running Unsteady Composition PDF Transport Simulations
19.6.5 Running Compressible Lagrangian PDF Transport Simulations
19.6.6 Running Lagrangian PDF Transport Simulations with Conjugate Heat Transfer
19.7 Postprocessing for Lagrangian PDF Transport Calculations
19.7.1 Reporting Options
19.7.2 Particle Tracking Options
19.8 Postprocessing for Eulerian PDF Transport Calculations
19.8.1 Reporting Options
20. Modeling Engine Ignition
20.1 Spark Model
20.1.1 Using the Spark Model
20.2 Autoignition Models
20.2.1 Using the Autoignition Models
20.3 Crevice Model
20.3.1 Using the Crevice Model
20.3.2 Crevice Model Solution Details
20.3.3 Postprocessing for the Crevice Model
21. Modeling Pollutant Formation
21.1 NOx Formation
21.1.1 Using the NOx Model
21.1.2 Solution Strategies
21.1.3 Postprocessing
21.2 SOx Formation
21.2.1 Using the SOx Model
21.2.2 Solution Strategies
21.2.3 Postprocessing
21.3 Soot Formation
21.3.1 Using the Soot Models
22. Predicting Aerodynamically Generated Noise
22.1 Overview
22.1.1 Direct Method
22.1.2 Integral Method Based on Acoustic Analogy
22.1.3 Broadband Noise Source Models
22.2 Using the Ffowcs Williams and Hawkings Acoustics Model
22.2.1 Enabling the FW-H Acoustics Model
22.2.2 Specifying Source Surfaces
22.2.3 Specifying Acoustic Receivers
22.2.4 Specifying the Time Step
22.2.5 Postprocessing the FW-H Acoustics Model Data
22.3 Using the Broadband Noise Source Models
22.3.1 Enabling the Broadband Noise Source Models
22.3.2 Postprocessing the Broadband Noise Source Model Data
23. Modeling Discrete Phase
23.1 Introduction
23.1.1 Overview
23.1.2 Limitations
23.2 Steps for Using the Discrete Phase Models
23.2.1 Options for Interaction with the Continuous Phase
23.2.2 Steady/Transient Treatment of Particles
23.2.3 Tracking Parameters for the Discrete Phase Model
23.2.4 Drag Laws
23.2.5 Physical Models for the Discrete Phase Model
23.2.6 Options for Spray Modeling
23.2.7 User-Defined Functions
23.2.8 Numerics of the Discrete Phase Model
23.3 Setting Initial Conditions for the Discrete Phase
23.3.1 Injection Types
23.3.2 Particle Types
23.3.3 Point Properties for Single Injections
23.3.4 Point Properties for Group Injections
23.3.5 Point Properties for Cone Injections
23.3.6 Point Properties for Surface Injections
23.3.7 Point Properties for Plain-Orifice Atomizer Injections
23.3.8 Point Properties for Pressure-Swirl Atomizer Injections
23.3.9 Point Properties for Air-Blast/Air-Assist Atomizer Injections
23.3.10 Point Properties for Flat-Fan Atomizer Injections
23.3.11 Point Properties for Effervescent Atomizer Injections
23.3.12 Point Properties for File Injections
23.3.13 Using the Rosin-Rammler Diameter Distribution Method
23.3.14 Creating and Modifying Injections
23.3.15 Defining Injection Properties
23.3.16 Specifying Turbulent Dispersion of Particles
23.3.17 Custom Particle Laws
23.3.18 Defining Properties Common to More than One Injection
23.4 Setting Boundary Conditions for the Discrete Phase
23.4.1 Discrete Phase Boundary Condition Types
23.4.2 Setting Particle Erosion and Accretion Parameters
23.5 Setting Material Properties for the Discrete Phase
23.5.1 Summary of Property Inputs
23.5.2 Setting Discrete-Phase Physical Properties
23.6 Solution Strategies for the Discrete Phase
23.6.1 Performing Trajectory Calculations
23.6.2 Resetting the Interphase Exchange Terms
23.7 Postprocessing for the Discrete Phase
23.7.1 Displaying of Trajectories
23.7.2 Reporting of Trajectory Fates
23.7.3 Step-by-Step Reporting of Trajectories
23.7.4 Reporting of Current Positions for Unsteady Tracking
23.7.5 Reporting of Interphase Exchange Terms and Discrete Phase Concentration
23.7.6 Sampling of Trajectories
23.7.7 Histogram Reporting of Samples
23.7.8 Summary Reporting of Current Particles
23.7.9 Postprocessing of Erosion/Accretion Rates
23.8 Parallel Processing for the Discrete Phase Model
24. Modeling Multiphase Flows
24.1 Introduction
24.2 Steps for Using a Multiphase Model
24.2.1 Enabling the Multiphase Model
24.2.2 Choosing a Volume Fraction Formulation
24.2.3 Solving a Homogeneous Multiphase Flow
24.2.4 Defining the Phases
24.2.5 Including Body Forces
24.2.6 Modeling Multiphase Species Transport
24.2.7 Specifying Heterogeneous Reactions
24.2.8 Including Mass Transfer Effects
24.2.9 Defining Multiphase Cell Zone and Boundary Conditions
24.3 Setting Up the VOF Model
24.3.1 Modeling Open Channel Flows
24.3.2 Modeling Open Channel Wave Boundary Conditions
24.3.3 Recommendations for Open Channel Innitialization
24.3.4 Defining the Phases for the VOF Model
24.3.5 Setting Time-Dependent Parameters for the VOF Model
24.3.6 Modeling Compressible Flows
24.3.7 Modeling Solidification/Melting
24.4 Setting Up the Mixture Model
24.4.1 Defining the Phases for the Mixture Model
24.4.2 Including Cavitation Effects
24.4.3 Modeling Compressible Flows
24.5 Setting Up the Eulerian Model
24.5.1 Additional Guidelines for Eulerian Multiphase Simulations
24.5.2 Defining the Phases for the Eulerian Model
24.5.3 Setting Time-Dependent Parameters for the Explicit Volume Fraction Scheme
24.5.4 Modeling Turbulence
24.5.5 Including Heat Transfer Effects
24.5.6 Modeling Compressible Flows
24.5.7 Including the Dense Discrete Phase Model
24.5.8 Including the Immiscible Fluid Model
24.6 Setting Up the Wet Steam Model
24.6.1 Using User-Defined Thermodynamic Wet Steam Properties
24.6.2 Writing the User-Defined Wet Steam Property Functions (UDWSPF)
24.6.3 Compiling Your UDWSPF and Building a Shared Library File
24.6.4 Loading the UDWSPF Shared Library File
24.6.5 UDWSPF Example
24.7 Solution Strategies for Multiphase Modeling
24.7.1 Coupled Solution for Multiphase Flows
24.7.2 Setting Initial Volume Fractions
24.7.3 VOF Model
24.7.4 Mixture Model
24.7.5 Eulerian Model
24.7.6 Wet Steam Model
24.8 Postprocessing for Multiphase Modeling
24.8.1 Model-Specific Variables
24.8.2 Displaying Velocity Vectors
24.8.3 Reporting Fluxes
24.8.4 Reporting Forces on Walls
24.8.5 Reporting Flow Rates
25. Modeling Solidification and Melting
25.1 Setup Procedure
25.2 Procedures for Modeling Continuous Casting
25.3 Solution Procedure
25.4 Postprocessing
26. Using the Solver
26.1 Overview of Using the Solver
26.1.1 Choosing the Solver
26.2 Choosing the Spatial Discretization Scheme
26.2.1 First-Order Accuracy vs. Second-Order Accuracy
26.2.2 Other Discretization Schemes
26.2.3 Choosing the Pressure Interpolation Scheme
26.2.4 Choosing the Density Interpolation Scheme
26.2.5 User Inputs
26.3 Pressure-Based Solver Settings
26.3.1 Choosing the Pressure-Velocity Coupling Method
26.3.2 Setting Under-Relaxation Factors
26.3.3 Setting Solution Controls for the Non-Iterative Solver
26.4 Density-Based Solver Settings
26.4.1 Changing the Courant Number
26.4.2 Convective Flux Types
26.4.3 Specifying the Explicit Relaxation
26.4.4 Turning On FAS Multigrid
26.5 Setting Algebraic Multigrid Parameters
26.5.1 Additional Algebraic Multigrid Parameters
26.5.2 Setting FAS Multigrid Parameters
26.6 Setting Solution Limits
26.7 Setting Multi-Stage Time-Stepping Parameters
26.8 Selecting Gradient Limiters
26.9 Initializing the Solution
26.9.1 Initializing the Entire Flow Field
26.9.2 Patching Values in Selected Cells
26.10 Using Full Multigrid (FMG) Initialization
26.10.1 Steps in Using FMG Initialization
26.10.2 Convergence Strategies for FMG Initialization
26.11 Performing Steady-State Calculations
26.12 Performing Time-Dependent Calculations
26.12.1 User Inputs for Time-Dependent Problems
26.12.2 Adaptive Time Stepping
26.12.3 Variable Time Stepping
26.12.4 Postprocessing for Time-Dependent Problems
26.13 Monitoring Solution Convergence
26.13.1 Monitoring Residuals
26.13.2 Monitoring Statistics
26.13.3 Monitoring Force and Moment Coefficients
26.13.4 Monitoring Surface Integrals
26.13.5 Monitoring Volume Integrals
26.14 Executing Commands During the Calculation
26.14.1 Defining Macros
26.14.2 Saving Files During the Calculation
26.15 Automatic Initialization of the Solution and Case Modification
26.16 Animating the Solution
26.16.1 Defining an Animation Sequence
26.16.2 Playing an Animation Sequence
26.16.3 Saving an Animation Sequence
26.16.4 Reading an Animation Sequence
26.17 Checking Your Case Setup
26.17.1 Checking the Mesh
26.17.2 Checking Model Selections
26.17.3 Checking Boundary and Cell Zone Conditions
26.17.4 Checking Material Properties
26.17.5 Checking the Solver Settings
26.18 Convergence and Stability
26.18.1 Judging Convergence
26.18.2 Step-by-Step Solution Processes
26.18.3 Modifying Algebraic Multigrid Parameters
26.18.4 Modifying the Multi-Stage Parameters
26.19 Solution Steering
26.19.1 Overview of Solution Steering
26.19.2 Solution Steering Strategy
26.19.3 Using Solution Steering
27. Adapting the Mesh
27.1 Using Adaption
27.1.1 Adaption Example
27.1.2 Adaption Guidelines
27.2 Boundary Adaption
27.2.1 Performing Boundary Adaption
27.3 Gradient Adaption
27.3.1 Performing Gradient Adaption
27.4 Dynamic Gradient Adaption
27.4.1 Dynamic Gradient Adaption Approach
27.5 Isovalue Adaption
27.5.1 Performing Isovalue Adaption
27.6 Region Adaption
27.6.1 Performing Region Adaption
27.7 Volume Adaption
27.7.1 Performing Volume Adaption
27.8 Yplus/Ystar Adaption
27.8.1 Performing Yplus or Ystar Adaption
27.9 Anisotropic Adaption
27.9.1 Limitations of Anisotropic Adaption
27.9.2 Performing Anisotropic Adaption
27.10 Geometry-Based Adaption
27.10.1 Performing Geometry-Based Adaption
27.11 Registers
27.11.1 Manipulating Adaption Registers
27.11.2 Modifying Adaption Marks
27.11.3 Displaying Registers
27.11.4 Adapting to Registers
27.12 Mesh Adaption Controls
27.13 Improving the Mesh by Smoothing and Swapping
27.13.1 Smoothing
27.13.2 Face Swapping
27.13.3 Combining Skewness-Based Smoothing and Face Swapping
28. Creating Surfaces for Displaying and Reporting Data
28.1 Using Surfaces
28.2 Zone Surfaces
28.3 Partition Surfaces
28.4 Point Surfaces
28.4.1 Using the Point Tool
28.5 Line and Rake Surfaces
28.5.1 Using the Line Tool
28.6 Plane Surfaces
28.6.1 Using the Plane Tool
28.7 Quadric Surfaces
28.8 Isosurfaces
28.9 Clipping Surfaces
28.10 Transforming Surfaces
28.11 Grouping, Renaming, and Deleting Surfaces
29. Displaying Graphics
29.1 Basic Graphics Generation
29.1.1 Displaying the Mesh
29.1.2 Displaying Contours and Profiles
29.1.3 Displaying Vectors
29.1.4 Displaying Pathlines
29.1.5 Displaying Results on a Sweep Surface
29.1.6 Hiding the Graphics Window Display
29.2 Customizing the Graphics Display
29.2.1 Overlay of Graphics
29.2.2 Opening Multiple Graphics Windows
29.2.3 Changing the Legend Display
29.2.4 Adding Text to the Graphics Window
29.2.5 Changing the Colormap
29.2.6 Adding Lights
29.2.7 Modifying the Rendering Options
29.3 Controlling the Mouse Button Functions
29.4 Viewing the Application Window
29.4.1 Embedding the Graphics Windows
29.5 Modifying the View
29.5.1 Scaling, Centering, Rotating, Translating, and Zooming the Display
29.5.2 Controlling Perspective and Camera Parameters
29.5.3 Saving and Restoring Views
29.5.4 Mirroring and Periodic Repeats
29.6 Composing a Scene
29.6.1 Selecting the Object(s) to be Manipulated
29.6.2 Changing an Object's Display Properties
29.6.3 Transforming Geometric Objects in a Scene
29.6.4 Modifying Iso-Values
29.6.5 Modifying Pathline Attributes
29.6.6 Deleting an Object from the Scene
29.6.7 Adding a Bounding Frame
29.7 Animating Graphics
29.7.1 Creating an Animation
29.7.2 Playing an Animation
29.7.3 Saving an Animation
29.7.4 Reading an Animation File
29.7.5 Notes on Animation
29.8 Creating Videos
29.8.1 Recording Animations To Video
29.8.2 Equipment Required
29.8.3 Recording an Animation with
ANSYS FLUENT
29.9 Histogram and XY Plots
29.9.1 Plot Types
29.9.2 XY Plots of Solution Data
29.9.3 XY Plots of File Data
29.9.4 XY Plots of Profiles
29.9.5 XY Plots of Circumferential Averages
29.9.6 XY Plot File Format
29.9.7 Residual Plots
29.9.8 Histograms
29.9.9 Modifying Axis Attributes
29.9.10 Modifying Curve Attributes
29.10 Turbomachinery Postprocessing
29.10.1 Defining the Turbomachinery Topology
29.10.2 Generating Reports of Turbomachinery Data
29.10.3 Displaying Turbomachinery Averaged Contours
29.10.4 Displaying Turbomachinery 2D Contours
29.10.5 Generating Averaged XY Plots of Turbomachinery Solution Data
29.10.6 Globally Setting the Turbomachinery Topology
29.10.7 Turbomachinery-Specific Variables
29.11 Fast Fourier Transform (FFT) Postprocessing
29.11.1 Limitations of the FFT Algorithm
29.11.2 Windowing
29.11.3 Fast Fourier Transform (FFT)
29.11.4 Using the FFT Utility
30. Reporting Alphanumeric Data
30.1 Reporting Conventions
30.2 Creating Output Parameters
30.3 Fluxes Through Boundaries
30.3.1 Generating a Flux Report
30.3.2 Flux Reporting for Reacting Flows
30.4 Forces on Boundaries
30.4.1 Generating a Force, Moment, or Center of Pressure Report
30.5 Projected Surface Area Calculations
30.6 Surface Integration
30.6.1 Generating a Surface Integral Report
30.7 Volume Integration
30.7.1 Generating a Volume Integral Report
30.8 Histogram Reports
30.9 Discrete Phase
30.10 S2S Information
30.11 Reference Values
30.11.1 Setting Reference Values
30.11.2 Setting the Reference Zone
30.12 Summary Reports of Case Settings
30.12.1 Generating a Summary Report
30.13 Memory and CPU Usage
31. Field Function Definitions
31.1 Node, Cell, and Facet Values
31.1.1 Cell Values
31.1.2 Node Values
31.1.3 Facet Values
31.2 Velocity Reporting Options
31.3 Field Variables Listed by Category
31.4 Alphabetical Listing of Field Variables and Their Definitions
31.5 Custom Field Functions
31.5.1 Creating a Custom Field Function
31.5.2 Manipulating, Saving, and Loading Custom Field Functions
31.5.3 Sample Custom Field Functions
32. Parallel Processing
32.1 Introduction to Parallel Processing
32.2 Starting Parallel
ANSYS FLUENT
Using
FLUENT Launcher
32.2.1 Setting Parallel Scheduler Options in
FLUENT Launcher
32.3 Starting Parallel
ANSYS FLUENT
on a Windows System
32.3.1 Starting Parallel
ANSYS FLUENT
on a Windows System Using Command Line Options
32.4 Starting Parallel
ANSYS FLUENT
on a Linux/UNIX System
32.4.1 Starting Parallel
ANSYS FLUENT
on a Linux/UNIX System Using Command Line Options
32.4.2 Setting Up Your Remote Shell and Secure Shell Clients
32.5 Mesh Partitioning and Load Balancing
32.5.1 Overview of Mesh Partitioning
32.5.2 Preparing Hexcore Meshes for Partitioning
32.5.3 Partitioning the Mesh Automatically
32.5.4 Partitioning the Mesh Manually and Balancing the Load
32.5.5 Using the
Partitioning and Load Balancing
Dialog Box
32.5.6 Mesh Partitioning Methods
32.5.7 Checking the Partitions
32.5.8 Load Distribution
32.6 Checking Network Connectivity
32.7 Checking and Improving Parallel Performance
32.7.1 Checking Parallel Performance
32.7.2 Optimizing the Parallel Solver
33. Task Page Reference Guide
33.1
Problem Setup
Task Page
33.2
General
Task Page
33.2.1 Scale Mesh Dialog Box
33.2.2 Mesh Display Dialog Box
33.2.3 Set Units Dialog Box
33.2.4 Define Unit Dialog Box
33.2.5 Mesh Colors Dialog Box
33.3
Models
Task Page
33.3.1 Multiphase Model Dialog Box
33.3.2 Energy Dialog Box
33.3.3 Viscous Model Dialog Box
33.3.4 Radiation Model Dialog Box
33.3.5 View Factor and Cluster Parameters Dialog Box
33.3.6 Select Radiating Boundary Zones Dialog Box
33.3.7 Solar Calculator Dialog Box
33.3.8 Heat Exchanger Model Dialog Box
33.3.9 Dual Cell Heat Exchanger Dialog Box
33.3.10 Set Dual Cell Heat Exchanger Dialog Box
33.3.11 Heat Transfer Data Table Dialog Box
33.3.12 NTU Table Dialog Box
33.3.13 Ungrouped Macro Heat Exchanger Dialog Box
33.3.14 Velocity Effectiveness Curve Dialog Box
33.3.15 Core Porosity Model Dialog Box
33.3.16 Macro Heat Exchanger Group Dialog Box
33.3.17 Species Model Dialog Box
33.3.18 Coal Calculator Dialog Box
33.3.19 Integration Parameters Dialog Box
33.3.20 Chemkin Mechanism Import Dialog Box
33.3.21 Flamelet 3D Surfaces Dialog Box
33.3.22 Flamelet 2D Curves Dialog Box
33.3.23 Spark Ignition Model Dialog Box
33.3.24 Autoignition Model Dialog Box
33.3.25 Inert Dialog Box
33.3.26 NOx Model Dialog Box
33.3.27 SOx Model Dialog Box
33.3.28 Soot Model Dialog Box
33.3.29 Discrete Phase Model Dialog Box
33.3.30 Solidification and Melting Dialog Box
33.3.31 Acoustics Model Dialog Box
33.3.32 Acoustic Sources Dialog Box
33.3.33 Acoustic Receivers Dialog Box
33.3.34 Interior Cell Zone Selection Dialog Box
33.4
Materials
Task Page
33.4.1 Create/Edit Materials Dialog Box
33.4.2 FLUENT Database Materials Dialog Box
33.4.3 Open Database Dialog Box
33.4.4 User-Defined Database Materials Dialog Box
33.4.5 Copy Case Material Dialog Box
33.4.6 Material Properties Dialog Box
33.4.7 Edit Property Methods Dialog Box
33.4.8 New Material Name Dialog Box
33.4.9 Polynomial Profile Dialog Box
33.4.10 Piecewise-Linear Profile Dialog Box
33.4.11 Piecewise-Polynomial Profile Dialog Box
33.4.12 User-Defined Functions Dialog Box
33.4.13 Sutherland Law Dialog Box
33.4.14 Power Law Dialog Box
33.4.15 Non-Newtonian Power Law Dialog Box
33.4.16 Carreau Model Dialog Box
33.4.17 Cross Model Dialog Box
33.4.18 Herschel-Bulkley Dialog Box
33.4.19 Biaxial Conductivity Dialog Box
33.4.20 Cylindrical Orthotropic Conductivity Dialog Box
33.4.21 Orthotropic Conductivity Dialog Box
33.4.22 Anisotropic Conductivity Dialog Box
33.4.23 Species Dialog Box
33.4.24 Reactions Dialog Box
33.4.25 Reaction Parameters Dialog Box
33.4.26 Pressure-Dependent Reaction Dialog Box
33.4.27 Coverage-Dependent Reaction Dialog Box
33.4.28 Reaction Mechanisms Dialog Box
33.4.29 Site Parameters Dialog Box
33.4.30 Mass Diffusion Coefficients Dialog Box
33.4.31 Thermal Diffusion Coefficients Dialog Box
33.4.32 UDS Diffusion Coefficients Dialog Box
33.4.33 WSGGM User Specified Dialog Box
33.4.34 Gray-Band Absorption Coefficient Dialog Box
33.4.35 Delta-Eddington Scattering Function Dialog Box
33.4.36 Gray-Band Refractive Index Dialog Box
33.4.37 Single Rate Devolatilization Dialog Box
33.4.38 Two Competing Rates Model Dialog Box
33.4.39 CPD Model Dialog Box
33.4.40 Kinetics/Diffusion-Limited Combustion Model Dialog Box
33.4.41 Intrinsic Combustion Model Dialog Box
33.4.42 Edit Material Dialog Box
33.4.43 FLUENT Database Materials Dialog Box
33.5
Phases
Task Page
33.5.1 Primary Phase Dialog Box
33.5.2 Secondary Phase Dialog Box
33.5.3 Phase Interaction Dialog Box
33.6
Cell Zone Conditions
Task Page
33.6.1 Fluid Dialog Box
33.6.2 Solid Dialog Box
33.6.3 Copy Conditions Dialog Box
33.6.4 Operating Conditions Dialog Box
33.6.5 Profiles Dialog Box
33.6.6 Orient Profile Dialog Box
33.6.7 Write Profile Dialog Box
33.7
Boundary Conditions
Task Page
33.7.1 Axis Dialog Box
33.7.2 Exhaust Fan Dialog Box
33.7.3 Fan Dialog Box
33.7.4 Inlet Vent Dialog Box
33.7.5 Intake Fan Dialog Box
33.7.6 Interface Dialog Box
33.7.7 Interior Dialog Box
33.7.8 Mass-Flow Inlet Dialog Box
33.7.9 Outflow Dialog Box
33.7.10 Outlet Vent Dialog Box
33.7.11 Periodic Dialog Box
33.7.12 Porous Jump Dialog Box
33.7.13 Pressure Far-Field Dialog Box
33.7.14 Pressure Inlet Dialog Box
33.7.15 Pressure Outlet Dialog Box
33.7.16 Radiator Dialog Box
33.7.17 Symmetry Dialog Box
33.7.18 Velocity Inlet Dialog Box
33.7.19 Wall Dialog Box
33.7.20 Periodic Conditions Dialog Box
33.8
Mesh Interfaces
Task Page
33.8.1 Create/Edit Mesh Interfaces Dialog Box
33.9
Dynamic Mesh
Task Page
33.9.1 Mesh Method Settings Dialog Box
33.9.2 Mesh Scale Info Dialog Box
33.9.3 In-Cylinder Settings Dialog Box
33.9.4 In-Cylinder Output Controls Dialog Box
33.9.5 Six DOF Solver Settings Dialog Box
33.9.6 Dynamic Mesh Events Dialog Box
33.9.7 Define Event Dialog Box
33.9.8 Events Preview Dialog Box
33.9.9 Dynamic Mesh Zones Dialog Box
33.9.10 Zone Scale Info Dialog Box
33.9.11 Zone Motion Dialog Box
33.9.12 Mesh Motion Dialog Box
33.10
Reference Values
Task Page
33.11
Solution
Task Page
33.12
Solution Methods
Task Page
33.13
Solution Controls
Task Page
33.13.1 Equations Dialog Box
33.13.2 Solution Limits Dialog Box
33.13.3 Advanced Solution Controls Dialog Box
33.14
Monitors
Task Page
33.14.1 Residual Monitors Dialog Box
33.14.2 Statistic Monitors Dialog Box
33.14.3 Drag Monitor Dialog Box
33.14.4 Lift Monitor Dialog Box
33.14.5 Moment Monitor Dialog Box
33.14.6 Surface Monitor Dialog Box
33.14.7 Volume Monitor Dialog Box
33.14.8 Point Surface Dialog Box
33.14.9 Line/Rake Surface Dialog Box
33.14.10 Plane Surface Dialog Box
33.14.11 Quadric Surface Dialog Box
33.14.12 Iso-Surface Dialog Box
33.14.13 Iso-Clip Dialog Box
33.14.14 Surfaces Dialog Box
33.15
Solution Initialization
Task Page
33.15.1 Patch Dialog Box
33.16
Calculation Activities
Task Page
33.16.1 Autosave Dialog Box
33.16.2 Data File Quantities Dialog Box
33.16.3 Automatic Export Dialog Box
33.16.4 Automatic Particle History Data Export Dialog Box
33.16.5 Execute Commands Dialog Box
33.16.6 Define Macro Dialog Box
33.16.7 Automatic Solution Initialization and Case Modification Dialog Box
33.16.8 Solution Animation Dialog Box
33.16.9 Animation Sequence Dialog Box
33.17
Run Calculation
Task Page
33.17.1 Solution Steering Dialog Box
33.17.2 Case Check Dialog Box
33.17.3 Adaptive Time Step Settings Dialog Box
33.17.4 Variable Time Step Settings Dialog Box
33.17.5 Sampling Options Dialog Box
33.17.6 Acoustic Signals Dialog Box
33.18
Results
Task Page
33.19
Graphics and Animations
Task Page
33.19.1 Contours Dialog Box
33.19.2 Profile Options Dialog Box
33.19.3 Vectors Dialog Box
33.19.4 Vector Options Dialog Box
33.19.5 Custom Vectors Dialog Box
33.19.6 Vector Definitions Dialog Box
33.19.7 Pathlines Dialog Box
33.19.8 Path Style Attributes Dialog Box
33.19.9 Ribbon Attributes Dialog Box
33.19.10 Particle Tracks Dialog Box
33.19.11 Reporting Variables Dialog Box
33.19.12 Sweep Surface Dialog Box
33.19.13 Create Surface Dialog Box
33.19.14 Animate Dialog Box
33.19.15 Save Picture Dialog Box
33.19.16 Playback Dialog Box
33.19.17 Display Options Dialog Box
33.19.18 Scene Description Dialog Box
33.19.19 Display Properties Dialog Box
33.19.20 Transformations Dialog Box
33.19.21 Iso-Value Dialog Box
33.19.22 Pathline Attributes Dialog Box
33.19.23 Bounding Frame Dialog Box
33.19.24 Views Dialog Box
33.19.25 Write Views Dialog Box
33.19.26 Mirror Planes Dialog Box
33.19.27 Graphics Periodicity Dialog Box
33.19.28 Camera Parameters Dialog Box
33.19.29 Lights Dialog Box
33.19.30 Colormap Dialog Box
33.19.31 Colormap Editor Dialog Box
33.19.32 Annotate Dialog Box
33.20
Plots
Task Page
33.20.1 Solution XY Plot Dialog Box
33.20.2 Histogram Dialog Box
33.20.3 File XY Plot Dialog Box
33.20.4 Plot Profile Data Dialog Box
33.20.5 Plot Interpolated Data Dialog Box
33.20.6 Fourier Transform Dialog Box
33.20.7 Plot/Modify Input Signal Dialog Box
33.20.8 Axes Dialog Box
33.20.9 Curves Dialog Box
33.21
Reports
Task Page
33.21.1 Flux Reports Dialog Box
33.21.2 Force Reports Dialog Box
33.21.3 Projected Surface Areas Dialog Box
33.21.4 Surface Integrals Dialog Box
33.21.5 Volume Integrals Dialog Box
33.21.6 Sample Trajectories Dialog Box
33.21.7 Trajectory Sample Histograms Dialog Box
33.21.8 Particle Summary Dialog Box
33.21.9 Heat Exchanger Report Dialog Box
33.21.10 Parameters Dialog Box
33.21.11 Input Parameter Properties Dialog Box
33.21.12 Save Output Parameter Dialog Box
34. Menu Reference Guide
34.1
File
Menu
34.1.1
File/Read/Mesh...
34.1.2
File/Read/Case...
34.1.3
File/Read/Data...
34.1.4
File/Read/Case & Data...
34.1.5
File/Read/PDF...
34.1.6
File/Read/ISAT Table...
34.1.7
File/Read/DTRM Rays...
34.1.8
File/Read/View Factors...
34.1.9
File/Read/Profile...
34.1.10
File/Read/Scheme...
34.1.11
File/Read/Journal...
34.1.12
File/Write/Case...
34.1.13
File/Write/Data...
34.1.14
File/Write/Case & Data...
34.1.15
File/Write/PDF...
34.1.16
File/Write/ISAT Table...
34.1.17
File/Write/Flamelet...
34.1.18
File/Write/Surface Clusters...
34.1.19
File/Write/Profile...
34.1.20
File/Write/Autosave...
34.1.21
File/Write/Boundary Mesh...
34.1.22
File/Write/Start Journal...
34.1.23
File/Write/Stop Journal
34.1.24
File/Write/Start Transcript...
34.1.25
File/Write/Stop Transcript
34.1.26
File/Import/ABAQUS/Input File...
34.1.27
File/Import/ABAQUS/Filbin File...
34.1.28
File/Import/ABAQUS/ODB File...
34.1.29
File/Import/CFX/Definition File...
34.1.30
File/Import/CFX/Result File...
34.1.31
File/Import/CGNS/Mesh...
34.1.32
File/Import/CGNS/Data...
34.1.33
File/Import/CGNS/Mesh & Data...
34.1.34
File/Import/EnSight...
34.1.35
File/Import/FIDAP...
34.1.36
File/Import/GAMBIT...
34.1.37
File/Import/HYPERMESH ASCII...
34.1.38
File/Import/IC3M...
34.1.39
File/Import/I-deas Universal...
34.1.40
File/Import/LSTC/Input File...
34.1.41
File/Import/LSTC/State File...
34.1.42
File/Import/Marc POST...
34.1.43
File/Import/Mechanical APDL/Input File...
34.1.44
File/Import/Mechanical APDL/Result File...
34.1.45
File/Import/NASTRAN/Bulkdata File...
34.1.46
File/Import/NASTRAN/Op2 File...
34.1.47
File/Import/PATRAN/Neutral File...
34.1.48
File/Import/PATRAN/Result File...
34.1.49
File/Import/PLOT3D/Grid File...
34.1.50
File/Import/PLOT3D/Result File...
34.1.51
File/Import/PTC Mechanica Design...
34.1.52
File/Import/Tecplot...
34.1.53
File/Import/FLUENT 4 Case File...
34.1.54
File/Import/PreBFC File...
34.1.55
File/Import/Partition/Metis...
34.1.56
File/Import/Partition/Metis Zone...
34.1.57
File/Import/CHEMKIN Mechanism...
34.1.58
File/Export/Solution Data..
34.1.59
File/Export/Particle History Data..
34.1.60
File/Export/During Calculation/Solution Data..
34.1.61
File/Export/During Calculation/Particle History Data..
34.1.62
File/Export to CFD-Post...
34.1.63
File/Solution Files...
34.1.64
File/Interpolate...
34.1.65
File/FSI Mapping/Volume...
34.1.66
File/FSI Mapping/Surface...
34.1.67
File/Save Picture...
34.1.68
File/Data File Quantities...
34.1.69
File/Batch Options...
34.1.70
File/RSF...
34.1.71
File/Exit
34.2
Mesh
Menu
34.2.1
Mesh/Check
34.2.2
Mesh/Info/Quality
34.2.3
Mesh/Info/Size
34.2.4
Mesh/Info/Memory Usage
34.2.5
Mesh/Info/Zones
34.2.6
Mesh/Info/Partitions
34.2.7
Mesh/Polyhedra/Convert Domain
34.2.8
Mesh/Polyhedra/Convert Skewed Cells...
34.2.9
Mesh/Merge...
34.2.10
Mesh/Separate/Faces...
34.2.11
Mesh/Separate/Cells...
34.2.12
Mesh/Fuse...
34.2.13
Mesh/Zone/Append Case File...
34.2.14
Mesh/Zone/Append Case & Data Files...
34.2.15
Mesh/Zone/Replace...
34.2.16
Mesh/Zone/Delete...
34.2.17
Mesh/Zone/Deactivate...
34.2.18
Mesh/Zone/Activate...
34.2.19
Mesh/Reorder/Domain
34.2.20
Mesh/Reorder/Zones
34.2.21
Mesh/Reorder/Print Bandwidth
34.2.22
Mesh/Scale...
34.2.23
Mesh/Translate...
34.2.24
Mesh/Rotate...
34.2.25
Mesh/Smooth/Swap...
34.3
Define
Menu
34.3.1
Define/General...
34.3.2
Define/Models...
34.3.3
Define/Materials...
34.3.4
Define/Phases...
34.3.5
Define/Cell Zone Conditions...
34.3.6
Define/Boundary Conditions...
34.3.7
Define/Operating Conditions...
34.3.8
Define/Mesh Interfaces...
34.3.9
Define/Dynamic Mesh...
34.3.10
Define/Mixing Planes...
34.3.11
Define/Turbo Topology...
34.3.12
Define/Injections...
34.3.13
Define/DTRM Rays...
34.3.14
Define/Custom Field Functions...
34.3.15
Define/Parameters...
34.3.16
Define/Profiles...
34.3.17
Define/Units...
34.3.18
Define/User-Defined/Functions/Interpreted...
34.3.19
Define/User-Defined/Functions/Compiled...
34.3.20
Define/User-Defined/Functions/Manage...
34.3.21
Define/User-Defined/Function Hooks...
34.3.22
Define/User-Defined/Execute on Demand...
34.3.23
Define/User-Defined/Scalars...
34.3.24
Define/User-Defined/Memory...
34.3.25
Define/User-Defined/Fan Model...
34.3.26
Define/User-Defined/1D Coupling...
34.4
Solve
Menu
34.4.1
Solve/Methods...
34.4.2
Solve/Controls...
34.4.3
Solve/Monitors...
34.4.4
Solve/Initialization...
34.4.5
Solve/Calculation Activities...
34.4.6
Solve/Run Calculation....
34.5
Adapt
Menu
34.5.1
Adapt/Boundary...
34.5.2
Adapt/Gradient...
34.5.3
Adapt/Iso-Value...
34.5.4
Adapt/Region...
34.5.5
Adapt/Volume...
34.5.6
Adapt/Yplus/Ystar...
34.5.7
Adapt/Anisotropic...
34.5.8
Adapt/Manage...
34.5.9
Adapt/Controls...
34.5.10
Adapt/Geometry...
34.5.11
Adapt/Display Options...
34.5.12
Adapt/Smooth/Swap...
34.6
Surface
Menu
34.6.1
Surface/Zone...
34.6.2
Surface/Partition...
34.6.3
Surface/Point...
34.6.4
Surface/Line/Rake...
34.6.5
Surface/Plane...
34.6.6
Surface/Quadric...
34.6.7
Surface/Iso-Surface...
34.6.8
Surface/Iso-Clip...
34.6.9
Surface/Transform...
34.6.10
Surface/Manage...
34.7
Display
Menu
34.7.1
Display/Mesh...
34.7.2
Display/Graphics and Animations...
34.7.3
Display/Plots...
34.7.4
Display/Residuals...
34.7.5
Display/Options...
34.7.6
Display/Scene...
34.7.7
Display/Views...
34.7.8
Display/Lights...
34.7.9
Display/Colormap...
34.7.10
Display/Annotate...
34.7.11
Display/Zone Motion...
34.7.12
Display/DTRM Graphics...
34.7.13
Display/Import Particle Data...
34.7.14
Display/PDF Tables/Curves...
34.7.15
Display/Video Control...
34.7.16
Display/Mouse Buttons...
34.8
Report
Menu
34.8.1
Report/Result Reports...
34.8.2
Report/Input Summary...
34.8.3
Report/S2S Information...
34.8.4
Report/Reference Values...
34.9
Parallel
Menu
34.9.1
Parallel/Auto Partition...
34.9.2
Parallel/Partitioning and Load Balancing...
34.9.3
Parallel/Network/Database...
34.9.4
Parallel/Network/Configure...
34.9.5
Parallel/Network/Show Connectivity...
34.9.6
Parallel/Network/Show Latency
34.9.7
Parallel/Network/Show Bandwidth
34.9.8
Parallel/Timer/Usage
34.9.9
Parallel/Timer/Reset
34.10
View
Menu
34.10.1
View/Toolbars
34.10.2
View/Navigation Pane
34.10.3
View/Task Page
34.10.4
View/Graphics Window
34.10.5
View/Embed Graphics Window
34.10.6
View/Show All
34.10.7
View/Show Only Console
34.10.8
View/Graphics Window Layout
34.10.9
View/Save Layout
34.11
Turbo
Menu
34.11.1
Turbo/Report...
34.11.2
Turbo/Averaged Contours...
34.11.3
Turbo/2D Contours...
34.11.4
Turbo/Averaged XY Plot...
34.11.5
Turbo/Options...
34.12
Help
Menu
34.12.1
Help/User's Guide Contents...
34.12.2
Help/User's Guide Index...
34.12.3
Help/More Documentation...
34.12.4
Help/Context-Sensitive Help
34.12.5
Help/Using Help...
34.12.6
Help/User Services Center
34.12.7
Help/Online Technical Support
34.12.8
Help/Licence Usage
34.12.9
Help/Version...
A.
ANSYS FLUENT
Model Compatibility
A.1
ANSYS FLUENT
Model Compatibility Chart
B. Case and Data File Formats
B.1 Guidelines
B.2 Formatting Conventions in Binary and Formatted Files
B.3 Grid Sections
B.3.1 Comment
B.3.2 Header
B.3.3 Dimensions
B.3.4 Nodes
B.3.5 Periodic Shadow Faces
B.3.6 Cells
B.3.7 Faces
B.3.8 Face Tree
B.3.9 Cell Tree
B.3.10 Interface Face Parents
B.4 Other (Non-Grid) Case Sections
B.4.1 Zone
B.4.2 Partitions
B.5 Data Sections
B.5.1 Grid Size
B.5.2 Data Field
B.5.3 Residuals
Nomenclature
Bibliography
Index
Previous:
ANSYS FLUENT 12.0 User's Guide
Up:
ANSYS FLUENT 12.0 User's Guide
Next:
Using This Manual
Release 12.0 ©
ANSYS, Inc.
2009-01-29