Contents
Using This Manual
The Contents of This Manual
The Contents of the Other Manuals
Typographical Conventions
Mathematical Conventions
Technical Support
Contacting Technical Support
1. Basic Fluid Flow
1.1 Overview of Physical Models in
ANSYS FLUENT
1.2 Continuity and Momentum Equations
1.3 User-Defined Scalar (UDS) Transport Equations
1.3.1 Single Phase Flow
1.3.2 Multiphase Flow
1.4 Periodic Flows
1.4.1 Overview
1.4.2 Limitations
1.4.3 Physics of Periodic Flows
1.5 Swirling and Rotating Flows
1.5.1 Overview of Swirling and Rotating Flows
1.5.2 Physics of Swirling and Rotating Flows
1.6 Compressible Flows
1.6.1 When to Use the Compressible Flow Model
1.6.2 Physics of Compressible Flows
1.7 Inviscid Flows
1.7.1 Euler Equations
2. Flows with Rotating Reference Frames
2.1 Introduction
2.2 Flow in a Rotating Reference Frame
2.2.1 Equations for a Rotating Reference Frame
2.2.2 Single Rotating Reference Frame (SRF) Modeling
2.3 Flow in Multiple Rotating Reference Frames
2.3.1 The Multiple Reference Frame Model
2.3.2 The Mixing Plane Model
3. Flows Using Sliding and Deforming Meshes
3.1 Introduction
3.2 Sliding Mesh Theory
3.2.1 The Sliding Mesh Concept
3.3 Dynamic Mesh Theory
3.3.1 Dynamic Mesh Update Methods
3.3.2 Six DOF (6DOF) Solver Theory
4. Turbulence
4.1 Introduction
4.2 Choosing a Turbulence Model
4.2.1 Reynolds-Averaged Approach vs. LES
4.2.2 Reynolds (Ensemble) Averaging
4.2.3 Boussinesq Approach vs. Reynolds Stress Transport Models
4.3 Spalart-Allmaras Model
4.3.1 Overview
4.3.2 Transport Equation for the Spalart-Allmaras Model
4.3.3 Modeling the Turbulent Viscosity
4.3.4 Modeling the Turbulent Production
4.3.5 Modeling the Turbulent Destruction
4.3.6 Model Constants
4.3.7 Wall Boundary Conditions
4.3.8 Convective Heat and Mass Transfer Modeling
4.4 Standard, RNG, and Realizable
-
Models
4.4.1 Standard
-
Model
4.4.2 RNG
-
Model
4.4.3 Realizable
-
Model
4.4.4 Modeling Turbulent Production in the
-
Models
4.4.5 Effects of Buoyancy on Turbulence in the
-
Models
4.4.6 Effects of Compressibility on Turbulence in the
-
Models
4.4.7 Convective Heat and Mass Transfer Modeling in the
-
Models
4.5 Standard and SST
-
Models
4.5.1 Standard
-
Model
4.5.2 Shear-Stress Transport (SST)
-
Model
4.5.3 Wall Boundary Conditions
4.6
-
-
Transition Model
4.6.1 Overview
4.6.2 Transport Equations for the
-
-
Model
4.7 Transition SST Model
4.7.1 Overview
4.7.2 Transport Equations for the Transition SST Model
4.7.3 Specifying Inlet Turbulence Levels
4.8 The
-
Model
4.9 Reynolds Stress Model (RSM)
4.9.1 Overview
4.9.2 Reynolds Stress Transport Equations
4.9.3 Modeling Turbulent Diffusive Transport
4.9.4 Modeling the Pressure-Strain Term
4.9.5 Effects of Buoyancy on Turbulence
4.9.6 Modeling the Turbulence Kinetic Energy
4.9.7 Modeling the Dissipation Rate
4.9.8 Modeling the Turbulent Viscosity
4.9.9 Wall Boundary Conditions
4.9.10 Convective Heat and Mass Transfer Modeling
4.10 Detached Eddy Simulation (DES)
4.10.1 Spalart-Allmaras Based DES Model
4.10.2 Realizable
-
Based DES Model
4.10.3 SST
-
Based DES Model
4.11 Large Eddy Simulation (LES) Model
4.11.1 Overview
4.11.2 Filtered Navier-Stokes Equations
4.11.3 Subgrid-Scale Models
4.11.4 Inlet Boundary Conditions for the LES Model
4.12 Near-Wall Treatments for Wall-Bounded Turbulent Flows
4.12.1 Overview
4.12.2 Standard Wall Functions
4.12.3 Non-Equilibrium Wall Functions
4.12.4 Enhanced Wall Treatment
4.12.5 User-Defined Wall Functions
4.12.6 LES Near-Wall Treatment
5. Heat Transfer
5.1 Introduction
5.2 Modeling Conductive and Convective Heat Transfer
5.2.1 Heat Transfer Theory
5.2.2 Natural Convection and Buoyancy-Driven Flows Theory
5.3 Modeling Radiation
5.3.1 Overview and Limitations
5.3.2 Radiative Transfer Equation
5.3.3 P-1 Radiation Model Theory
5.3.4 Rosseland Radiation Model Theory
5.3.5 Discrete Transfer Radiation Model (DTRM) Theory
5.3.6 Discrete Ordinates (DO) Radiation Model Theory
5.3.7 Surface-to-Surface (S2S) Radiation Model Theory
5.3.8 Radiation in Combusting Flows
5.3.9 Choosing a Radiation Model
6. Heat Exchangers
6.1 The Macro Heat Exchanger Models
6.1.1 Overview and Restrictions of the Macro Heat Exchanger Models
6.1.2 Macro Heat Exchanger Model Theory
6.2 The Dual Cell Model
6.2.1 Overview and Restrictions of the Dual Cell Model
6.2.2 Dual Cell Model Theory
7. Species Transport and Finite-Rate Chemistry
7.1 Volumetric Reactions
7.1.1 Species Transport Equations
7.1.2 The Generalized Finite-Rate Formulation for Reaction Modeling
7.2 Wall Surface Reactions and Chemical Vapor Deposition
7.2.1 Surface Coverage Reaction Rate Modification
7.2.2 Reaction-Diffusion Balance for Surface Chemistry
7.2.3 Slip Boundary Formulation for Low-Pressure Gas Systems
7.3 Particle Surface Reactions
7.3.1 General Description
7.3.2
ANSYS FLUENT
Model Formulation
7.3.3 Extension for Stoichiometries with Multiple Gas Phase Reactants
7.3.4 Solid-Solid Reactions
7.3.5 Solid Decomposition Reactions
7.3.6 Solid Deposition Reactions
7.3.7 Gaseous Solid Catalyzed Reactions on the Particle Surface
8. Non-Premixed Combustion
8.1 Introduction
8.2 Non-Premixed Combustion and Mixture Fraction Theory
8.2.1 Mixture Fraction Theory
8.2.2 Modeling of Turbulence-Chemistry Interaction
8.2.3 Non-Adiabatic Extensions of the Non-Premixed Model
8.2.4 Chemistry Tabulation
8.3 Restrictions and Special Cases for Using the Non-Premixed Model
8.3.1 Restrictions on the Mixture Fraction Approach
8.3.2 Using the Non-Premixed Model for Liquid Fuel or Coal Combustion
8.3.3 Using the Non-Premixed Model with Flue Gas Recycle
8.3.4 Using the Non-Premixed Model with the Inert Model
8.4 The Laminar Flamelet Models Theory
8.4.1 Restrictions and Assumptions
8.4.2 The Flamelet Concept
8.4.3 Flamelet Generation
8.4.4 Flamelet Import
8.5 The Steady Laminar Flamelet Model Theory
8.5.1 Overview
8.5.2 Multiple Steady Flamelet Libraries
8.5.3 Steady Laminar Flamelet Automated Grid Refinement
8.5.4 Non-Adiabatic Steady Laminar Flamelets
8.6 The Unsteady Laminar Flamelet Model Theory
8.6.1 The Eulerian Unsteady Laminar Flamelet Model
8.6.2 The Diesel Unsteady Laminar Flamelet Model
9. Premixed Combustion
9.1 Overview and Limitations
9.1.1 Overview
9.1.2 Limitations
9.2 Zimont Turbulent Flame Closure Theory
9.2.1 Propagation of the Flame Front
9.2.2 Turbulent Flame Speed
9.3 Extended Coherent Flamelet Model Theory
9.3.1 Closure for ECFM Source Terms
9.3.2 Turbulent Flame Speed in ECFM
9.4 Calculation of Temperature
9.4.1 Adiabatic Temperature Calculation
9.4.2 Non-Adiabatic Temperature Calculation
9.5 Calculation of Density
10. Partially Premixed Combustion
10.1 Overview and Limitations
10.1.1 Overview
10.1.2 Limitations
10.2 Partially Premixed Combustion Theory
10.2.1 Calculation of Scalar Quantities
10.2.2 Laminar Flame Speed
11. Composition PDF Transport
11.1 Overview and Limitations
11.2 Composition PDF Transport Theory
11.3 The Lagrangian Solution Method
11.3.1 Particle Convection
11.3.2 Particle Mixing
11.3.3 Particle Reaction
11.3.4 The ISAT Algorithm
11.4 The Eulerian Solution Method
12. Engine Ignition
12.1 Spark Model
12.1.1 Overview and Limitations
12.1.2 Spark Model Theory
12.2 Autoignition Models
12.2.1 Overview and Limitations
12.2.2 Ignition Model Theory
12.3 Crevice Model
12.3.1 Overview
12.3.2 Limitations
12.3.3 Crevice Model Theory
13. Pollutant Formation
13.1 NOx Formation
13.1.1 Overview
13.1.2 Governing Equations for NOx Transport
13.1.3 Thermal NOx Formation
13.1.4 Prompt NOx Formation
13.1.5 Fuel NOx Formation
13.1.6 NOx Formation from Intermediate N
O
13.1.7 NOx Reduction by Reburning
13.1.8 NOx Reduction by SNCR
13.1.9 NOx Formation in Turbulent Flows
13.2 SOx Formation
13.2.1 Overview
13.2.2 Governing Equations for SOx Transport
13.2.3 Reaction Mechanisms for Sulfur Oxidation
13.2.4
and
Production in a Gaseous Fuel
13.2.5
and
Production in a Liquid Fuel
13.2.6
and
Production from Coal
13.2.7 SOx Formation in Turbulent Flows
13.3 Soot Formation
13.3.1 Overview and Limitations
13.3.2 Soot Model Theory
14. Aerodynamically Generated Noise
14.1 Overview
14.1.1 Direct Method
14.1.2 Integral Method Based on Acoustic Analogy
14.1.3 Broadband Noise Source Models
14.2 Acoustics Model Theory
14.2.1 The Ffowcs Williams and Hawkings Model
14.2.2 Broadband Noise Source Models
15. Discrete Phase
15.1 Introduction
15.2 Particle Motion Theory
15.2.1 Equations of Motion for Particles
15.2.2 Turbulent Dispersion of Particles
15.2.3 Integration of Particle Equation of Motion
15.3 Laws for Drag Coefficients
15.3.1 Spherical Drag Law
15.3.2 Non-spherical Drag Law
15.3.3 Stokes-Cunningham Drag Law
15.3.4 High-Mach-Number Drag Law
15.3.5 Dynamic Drag Model Theory
15.3.6 Dense Discrete Phase Model Drag Laws
15.4 Laws for Heat and Mass Exchange
15.4.1 Inert Heating or Cooling (Law 1/Law 6)
15.4.2 Droplet Vaporization (Law 2)
15.4.3 Droplet Boiling (Law 3)
15.4.4 Devolatilization (Law 4)
15.4.5 Surface Combustion (Law 5)
15.4.6 Multicomponent Particle Definition (Law 7)
15.5 Vapor Liquid Equilibrium Theory
15.6 Wall-Jet Model Theory
15.7 Wall-Film Model Theory
15.7.1 Introduction
15.7.2 Interaction During Impact with a Boundary
15.7.3 Splashing
15.7.4 Separation Criteria
15.7.5 Conservation Equations for Wall-Film Particles
15.8 Particle Erosion and Accretion Theory
15.9 Atomizer Model Theory
15.9.1 The Plain-Orifice Atomizer Model
15.9.2 The Pressure-Swirl Atomizer Model
15.9.3 The Air-Blast/Air-Assist Atomizer Model
15.9.4 The Flat-Fan Atomizer Model
15.9.5 The Effervescent Atomizer Model
15.10 Secondary Breakup Model Theory
15.10.1 Taylor Analogy Breakup (TAB) Model
15.10.2 Wave Breakup Model
15.11 Droplet Collision and Coalescence Model Theory
15.11.1 Introduction
15.11.2 Use and Limitations
15.11.3 Theory
15.12 One-Way and Two-Way Coupling
15.12.1 Coupling Between the Discrete and Continuous Phases
15.12.2 Momentum Exchange
15.12.3 Heat Exchange
15.12.4 Mass Exchange
15.12.5 Under-Relaxation of the Interphase Exchange Terms
15.12.6 Interphase Exchange During Stochastic Tracking
15.12.7 Interphase Exchange During Cloud Tracking
16. Multiphase Flows
16.1 Introduction
16.1.1 Multiphase Flow Regimes
16.1.2 Examples of Multiphase Systems
16.2 Choosing a General Multiphase Model
16.2.1 Approaches to Multiphase Modeling
16.2.2 Model Comparisons
16.2.3 Time Schemes in Multiphase Flow
16.2.4 Stability and Convergence
16.3 Volume of Fluid (VOF) Model Theory
16.3.1 Overview and Limitations of the VOF Model
16.3.2 Volume Fraction Equation
16.3.3 Material Properties
16.3.4 Momentum Equation
16.3.5 Energy Equation
16.3.6 Additional Scalar Equations
16.3.7 Time Dependence
16.3.8 Surface Tension and Wall Adhesion
16.3.9 Open Channel Flow
16.3.10 Open Channel Wave Boundary Conditions
16.4 Mixture Model Theory
16.4.1 Overview and Limitations of the Mixture Model
16.4.2 Continuity Equation
16.4.3 Momentum Equation
16.4.4 Energy Equation
16.4.5 Relative (Slip) Velocity and the Drift Velocity
16.4.6 Volume Fraction Equation for the Secondary Phases
16.4.7 Granular Properties
16.4.8 Granular Temperature
16.4.9 Interfacial Area Concentration
16.4.10 Solids Pressure
16.5 Eulerian Model Theory
16.5.1 Overview and Limitations of the Eulerian Model
16.5.2 Volume Fraction Equation
16.5.3 Conservation Equations
16.5.4 Interphase Exchange Coefficients
16.5.5 Solids Pressure
16.5.6 Maximum Packing Limit in Binary Mixtures
16.5.7 Solids Shear Stresses
16.5.8 Granular Temperature
16.5.9 Interfacial Area Concentration
16.5.10 Description of Heat Transfer
16.5.11 Turbulence Models
16.5.12 Solution Method in
ANSYS FLUENT
16.5.13 Dense Discrete Phase Model
16.5.14 Immiscible Fluid Model
16.6 Wet Steam Model Theory
16.6.1 Overview and Limitations of the Wet Steam Model
16.6.2 Wet Steam Flow Equations
16.6.3 Phase Change Model
16.6.4 Built-in Thermodynamic Wet Steam Properties
16.7 Modeling Mass Transfer in Multiphase Flows
16.7.1 Source Terms due to Mass Transfer
16.7.2 Unidirectional Constant Rate Mass Transfer
16.7.3 UDF-Prescribed Mass Transfer
16.7.4 Cavitation Models
16.7.5 Evaporation-Condensation Model
16.8 Modeling Species Transport in Multiphase Flows
16.8.1 Limitations
16.8.2 Mass and Momentum Transfer with Multiphase Species Transport
16.8.3 The Stiff Chemistry Solver
17. Solidification and Melting
17.1 Overview
17.2 Limitations
17.3 Introduction
17.4 Energy Equation
17.5 Momentum Equations
17.6 Turbulence Equations
17.7 Species Equations
17.8 Pull Velocity for Continuous Casting
17.9 Contact Resistance at Walls
18. Solver Theory
18.1 Overview of Flow Solvers
18.1.1 Pressure-Based Solver
18.1.2 Density-Based Solver
18.2 General Scalar Transport Equation: Discretization and Solution
18.2.1 Solving the Linear System
18.3 Discretization
18.3.1 Spatial Discretization
18.3.2 Temporal Discretization
18.3.3 Evaluation of Gradients and Derivatives
18.3.4 Gradient Limiters
18.4 Pressure-Based Solver
18.4.1 Discretization of the Momentum Equation
18.4.2 Discretization of the Continuity Equation
18.4.3 Pressure-Velocity Coupling
18.4.4 Steady-State Iterative Algorithm
18.4.5 Time-Advancement Algorithm
18.5 Density-Based Solver
18.5.1 Governing Equations in Vector Form
18.5.2 Preconditioning
18.5.3 Convective Fluxes
18.5.4 Steady-State Flow Solution Methods
18.5.5 Unsteady Flows Solution Methods
18.6 Multigrid Method
18.6.1 Approach
18.6.2 Multigrid Cycles
18.6.3 Algebraic Multigrid (AMG)
18.6.4 Full-Approximation Storage (FAS) Multigrid
18.7 Full Multigrid (FMG) Initialization
18.7.1 Overview of FMG Initialization
18.7.2 Limitations of FMG Initialization
19. Adapting the Mesh
19.1 Static Adaption Process
19.1.1 Hanging Node Adaption
19.2 Boundary Adaption
19.3 Gradient Adaption
19.3.1 Gradient Adaption Approach
19.3.2 Example of Steady Gradient Adaption
19.4 Dynamic Gradient Adaption
19.5 Isovalue Adaption
19.6 Region Adaption
19.6.1 Defining a Region
19.6.2 Region Adaption Example
19.7 Volume Adaption
19.7.1 Volume Adaption Approach
19.7.2 Volume Adaption Example
19.8 Yplus/Ystar Adaption
19.8.1 Yplus/Ystar Adaption Approach
19.9 Anisotropic Adaption
19.10 Geometry-Based Adaption
19.10.1 Geometry-Based Adaption Approach
19.11 Registers
20. Reporting Alphanumeric Data
20.1 Fluxes Through Boundaries
20.2 Forces on Boundaries
20.2.1 Computing Forces, Moments, and the Center of Pressure
20.3 Surface Integration
20.3.1 Computing Surface Integrals
20.4 Volume Integration
20.4.1 Computing Volume Integrals
Nomenclature
Bibliography
Index
Previous:
ANSYS FLUENT 12.0 Theory Guide
Up:
ANSYS FLUENT 12.0 Theory Guide
Next:
Using This Manual
Release 12.0 ©
ANSYS, Inc.
2009-01-23