[ANSYS, Inc. Logo] return to home search
next up previous contents index

15.3.2 Non-spherical Drag Law

For non-spherical particles Haider and Levenspiel [ 119] developed the correlation


 C_D = \frac{24}{\rm Re_{sph}} \left(1 + b_1 {\rm Re_{sph}}^{b_2} \right) + \frac{b_3 {\rm Re_{sph}}}{b_4 + {\rm Re_{sph}}} (15.3-2)

where

$\displaystyle b_1$ $\textstyle =$ $\displaystyle \exp(2.3288 - 6.4581\phi + 2.4486\phi^2)$  
$\displaystyle b_2$ $\textstyle =$ $\displaystyle 0.0964 + 0.5565\phi$  
$\displaystyle b_3$ $\textstyle =$ $\displaystyle \exp(4.905 - 13.8944\phi + 18.4222\phi^2 - 10.2599\phi^3)$  
$\displaystyle b_4$ $\textstyle =$ $\displaystyle \exp(1.4681 + 12.2584\phi - 20.7322\phi^2 + 15.8855\phi^3)$ (15.3-3)

The shape factor, $\phi$, is defined as

 \phi = \frac{s}{S} (15.3-4)

where $s$ is the surface area of a sphere having the same volume as the particle, and $S$ is the actual surface area of the particle. The Reynolds number $\rm Re_{sph}$ is computed with the diameter of a sphere having the same volume.

figure   

The shape factor cannot exceed a value of 1.


next up previous contents index Previous: 15.3.1 Spherical Drag Law
Up: 15.3 Laws for Drag
Next: 15.3.3 Stokes-Cunningham Drag Law
Release 12.0 © ANSYS, Inc. 2009-01-23