[ANSYS, Inc. Logo] return to home search
next up previous contents index

4.9.2 Reynolds Stress Transport Equations

The exact transport equations for the transport of the Reynolds stresses, $\rho \overline{u'_i u'_j}$, may be written as follows:


\underbrace{\frac{\partial}{\partial t} (\rho \; \overline{u... ...ght)} \right]}_ {\mbox{$D_{T,ij} \equiv$ Turbulent Diffusion}}


 \; \; + \underbrace{\frac{\partial}{\partial x_{k}} \left[ \... ...{u'_{i} \theta})}_{\mbox{$G_{ij} \equiv$ Buoyancy Production}}


+ \underbrace{\overline{ p \left (\frac{\partial u'_{i}}{\pa... ...j}}{\partial x_k}}}_{\mbox{$\epsilon_{ij} \equiv$ Dissipation}}


 \underbrace{- 2 \rho \Omega_k \left(\overline{u'_j u'_m} \e... ... + \underbrace{S_{\rm user}}_{\mbox{User-Defined Source Term}} (4.9-1)

Of the various terms in these exact equations, $C_{ij}$, $D_{L,ij}$, $P_{ij}$, and $F_{ij}$ do not require any modeling. However, $D_{T,ij}$, $G_{ij}$, $\phi_{ij}$, and $\epsilon_{ij}$ need to be modeled to close the equations. The following sections describe the modeling assumptions required to close the equation set.


next up previous contents index Previous: 4.9.1 Overview
Up: 4.9 Reynolds Stress Model
Next: 4.9.3 Modeling Turbulent Diffusive
Release 12.0 © ANSYS, Inc. 2009-01-23