Properties of anomalous ion heating in lower hybrid wave sustained plasmas

The University of Tokyo

Background and Objectives
- In the TST-2 spherical tokamak device, non-inductive start-up experiment by Lower-Hybrid waves (LHW) is conducted. \(T_e > 10 \text{ eV} \) and \(T_i \sim 10 \text{ eV} \) is observed.
- The LHW can couple with electrons, but not with ions due to the relation between particle velocities and wave phase velocity.
- Thus, the LHW can directly heat electrons, not ions.
- Because density is very low, the effect of collision with electrons is considered to be small.
- Power modulation experiment was conducted to investigate the response of ion temperature to LHW.

TST-2
Main parameter
- Major radius: \(R_0 = 0.36 \text{ m} \)
- Minor radius: \(a = 0.23 \text{ m} \)
- Toroidal filed: \(B_t = 0.16 \text{ T} \)
- Plasma current: \(I_p < 27 \text{ kA} \)
- Duration: \(r < 100 \text{ ms} \)
- Electron density: \(n_e < 1 \times 10^{18} \text{ m}^{-3} \)

There are two capacitively coupled combine antenna to excite LHW (200.1 MHz).

Visible spectroscopy
- Czerny-Turner spectrometer
- 16 CH PMT
- 0.2 nm/CH, Measurable: 200-500 nm
- I-V converter: < 0.01 ms
- 8 sights (\(R_{\text{map}} = 180 \text{-} 540 \text{ mm} \)) are available to measure to change them for each shot
- Impurity: C\(^{2+} \) (CIII, 484.74 nm)

Profiles of electrons and ions
- Magnetic axis: center peak
- Density: center peak
- \(T_e : \) Hollow (10-50 [eV])
- \(T_i : \) Flat or hollow (~10 [eV])

Analyzed Waveforms
- Modulation period of LHW power is 6 ms.

Conclusion and Future work
- Ion temperature responds to LHW modulation at peripheral region, does not respond near magnetic axis.
- Collision with electrons is very weak to explain the experimental results, other ion heating mechanism is needed on peripheral region.
- PDI is one candidate for ion heating and investigating the correlation between them is future work.

This work is supported by National Institute for Fusion Science Collaboration Research Programs NIFS18KOAR022 and NIFS20KUTR155.
This work is also supported in part by Japan/US Cooperation in Fusion Research and Development and US DoE Cooperative Agreement DE-FCO2-04ER54698.