3D Modeling of NSTX Vertical Displacement Events with M3D-C1

N.M. Ferraro and S.C. Jardin
Princeton Plasma Physics Laboratory

Presented at
18th International ST Workshop
November 3-6, 2015
A01 McDonnell Hall
Princeton University
Outline

• 3D extended MHD equations solved by M3D-C1
• Multi-region resistive wall model of arbitrary thickness
• Comparison of thin-wall model and M3D-C1 multi-region model
• Initial 2D simulation to compare with DINA and TSC
• 3D linear RWM Analytic Benchmark
• Full 3D simulation of a VDE in NSTX
• Summary of 3D results
• Near-term code development plans
Outline

• 3D extended MHD equations solved by M3D-C1
 • Multi-region resistive wall model of arbitrary thickness
 • Comparison of thin-wall model and M3D-C1 multi-region model
 • Initial 2D simulation to compare with DINA and TSC
 • 3D linear RWM Analytic Benchmark
 • Full 3D simulation of a VDE in NSTX
 • Summary of 3D results
 • Near-term code development plans
3D Extended MHD Equations in M3D-C1

\[
\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{V}) = S_n
\]

\[
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \quad \mathbf{B} = \nabla \times \mathbf{A} \quad \mathbf{J} = \nabla \times \mathbf{B}
\]

\[
nM_i \left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} \right) + \nabla p = \mathbf{J} \times \mathbf{B} - \nabla \cdot \Pi_i + S_m
\]

\[
\mathbf{E} + \mathbf{V} \times \mathbf{B} = \frac{1}{ne} \left(\mathbf{R}_e + \mathbf{J} \times \mathbf{B} - \nabla p_e - \nabla \cdot \Pi_e \right) - \frac{m_e}{e} \left(\frac{\partial \mathbf{V}_e}{\partial t} + \mathbf{V}_e \cdot \nabla \mathbf{V}_e \right) + S_{CD}
\]

\[
\frac{3}{2} \left[\frac{\partial p_e}{\partial t} + \nabla \cdot (p_e \mathbf{V}) \right] = -p_e \nabla \cdot \mathbf{V} + \frac{\mathbf{J}}{ne} \cdot \left[\frac{3}{2} \nabla p_e - \frac{5}{2} \frac{p_e}{n} \nabla n + \mathbf{R}_e \right] + \nabla \left(\frac{\mathbf{J}}{ne} \right) : \Pi_e - \nabla \cdot \mathbf{q}_e + Q_\Delta + S_{EE}
\]

\[
\frac{3}{2} \left[\frac{\partial p_i}{\partial t} + \nabla \cdot (p_i \mathbf{V}) \right] = -p_i \nabla \cdot \mathbf{V} - \Pi_i : \nabla \mathbf{V} - \nabla \cdot \mathbf{q}_i - Q_\Delta + S_{iE}
\]

\[
\mathbf{R}_e = \eta ne \mathbf{J}, \quad \Pi_i = -\mu \left[\nabla \mathbf{V} + \nabla \mathbf{V}^\dagger \right] - 2(\mu_c - \mu)(\nabla \cdot \mathbf{V}) \mathbf{I} + \Pi_i^{GV}
\]

\[
\Pi_e = (\mathbf{B} / B^2) \nabla \cdot \left[\lambda_h \nabla \left(\mathbf{J} \cdot \mathbf{B} / B^2 \right) \right], \quad Q_\Delta = 3m_e (p_i - p_e) / (M_i \tau_e)
\]

Full set of MHD equations are solved: NOT Reduced MHD
Resistive MHD in black, 2-Fluid terms are in Blue
Outline

• 3D extended MHD equations solved by M3D-C1
• Multi-region resistive wall model of arbitrary thickness
• Comparison of thin-wall model and M3D-C1 multi-region model
• Initial 2D simulation to compare with DINA and TSC
• 3D linear RWM Analytic Benchmark
• Full 3D simulation of a VDE in NSTX
• Summary of 3D results
• Near-term code development plans
M3D-C1 has been extended to 3 regions for RW*.

- **Vacuum (J=0)**
- **RW (E = \eta W J)**
- **Plasma (X-MHD)**

BC:
- \(\mathbf{v}, p, n\) set at inner wall
- \(\mathbf{B}\) set at outer (ideal) wall
- No boundary conditions on \(\mathbf{B}\) or \(\mathbf{J}\) at the resistive wall
- Current can flow into and through the wall

Wall can be of arbitrary thickness

*Ferraro, et al., Sherwood 2014
Submitted to JCP 2015*
Outline

• 3D extended MHD equations solved by M3D-C1
• Multi-region resistive wall model of arbitrary thickness
• Comparison of thin-wall model and M3D-C1 multi-region model
• Initial 2D simulation to compare with DINA and TSC
• 3D linear RWM Analytic Benchmark
• Full 3D simulation of a VDE in NSTX
• Summary of 3D results
• Near-term code development plans
Comparison of thin-wall and M3D-C1 multi-region models

Thin Wall
- Plasma equations
- B.C. on B_T?
- All grid points touching wall are coupled to each other in matrix
- Magnetic boundary conditions applied using thin-wall approximation
- Halo current involves approximations
- Thin wall only
- Constant wall resistivity

M3D-C1 MR
- Grid points are coupled to only nearest neighbors in matrix
- No magnetic boundary conditions at PW or WV interface
- Halo current occurs naturally
- Wall can be of arbitrary thickness
- Wall resistance can vary with angles to represent ports, etc.
Outline

- 3D extended MHD equations solved by M3D-C1
- Multi-region resistive wall model of arbitrary thickness
- Comparison of thin-wall model and M3D-C1 multi-region model
- Initial 2D simulation to compare with DINA and TSC
- 3D linear RWM Analytic Benchmark
- Full 3D simulation of a VDE in NSTX
- Summary of 3D results
- Near-term code development plans
Initial 2D simulation of VDE in NSTX with M3D-C1

- Initial results from 2D low-resolution calculation (similar to TSC)
- Both **Positive** and **Negative** (counter-current) currents are found
- We have now extended these results to 3D and realistic η_W

Toroidal current density at 5 times in VDE simulation
M3D-C1 J_φ, p, and $I=RB_T$ at a late time

Note halo currents
Dependence of NSTX VDE on η_W in 2D

Linear growth rate scales inversely with wall resistivity η_W as expected.

However, nonlinear time to a given offset scales weaker than linearly.
Outline

• 3D extended MHD equations solved by M3D-C1
• Multi-region resistive wall model of arbitrary thickness
• Comparison of thin-wall model and M3D-C1 multi-region model
• Initial 2D simulation to compare with DINA and TSC
• 3D linear RWM Analytic Benchmark
• Full 3D simulation of a VDE in NSTX
• Summary of 3D results
• Near-term code development plans
3D linear RWM Analytic Benchmark1,2

Circular cylindrical plasma

<table>
<thead>
<tr>
<th>Plasma region</th>
<th>Vacuum region</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_z = J_0$</td>
<td>$J_z = 0$</td>
<td>$J_z = 0$</td>
</tr>
<tr>
<td>$B_z = B_0$</td>
<td>$B_z = B_0$</td>
<td>$B_z = B_0$</td>
</tr>
<tr>
<td>$\rho = \rho_0$</td>
<td>$\rho = 0$</td>
<td>$\eta = \eta_w$</td>
</tr>
</tbody>
</table>

Reduced MHD Model

\[\delta B = \nabla \psi \times \hat{z} \quad \psi = \bar{\psi}(r)e^{i(m\theta - nz/R_0) + \gamma t} \]

\[\delta V = \nabla \phi \times \hat{z} \quad \phi = \bar{\phi}(r)e^{i(m\theta - nz/R_0) + \gamma t} \]

Note that:

\[\delta J = \frac{1}{\mu_0} \nabla \times \delta B = -\frac{1}{\mu_0} \left(\hat{z} \nabla_{\perp}^2 \psi + \frac{in}{R_0} \nabla_{\perp} \psi \right) \]

Must allow non-zero current in vacuum in this model

Thick Wall Dispersion Relation

\[\frac{m/m}{m - nq_0} - \frac{1}{1 - F \left(\frac{r_0}{r_w} \right)^2} = \frac{\left(\gamma \tau_A \right)^2}{2} \frac{q_0^2}{\left(m - nq_0^2 \right)^2} \]

where

\[F = \frac{I_{|m|-1}(\rho_b)K_{|m|-1}(\rho_a) - I_{|m|-1}(\rho_a)K_{|m|-1}(\rho_b)}{I_{|m|-1}(\rho_b)K_{|m|+1}(\rho_a) - I_{|m|+1}(\rho_a)K_{|m|-1}(\rho_b)} \]

here:

\[\rho_a = \sqrt{2\gamma \tau_w r_w / d}, \quad \rho_b = (1 + d / r_w) \rho_a \]

\[\tau_w = \mu_0 r_w d / 2\eta_w, \quad \tau_A = \sqrt{\mu_0 \rho_0 R_0 / B_0}, \]

\[q_0 = 2B_0 / (R_0 \mu_0 J_0) \]

also, thin wall and ideal wall limits

2Generalized to thick wall in Ferraro, et al. Submitted to JCP (2015)
Results of 3D Analytic Benchmark (1)

Growth rate of the external kink as a function of the radius of an ideal conformal wall.

Growth rate of the resistive wall mode as a function of the resistive diffusion time of the wall in the thin wall limit:

\[d / r_w = .02 \]
Results of 3D Analytic Benchmark (2)

RWM growth rate as a function of the wall thickness d compared to general solution and thin wall solution.

Note: High resolution in wall and near plasma-vacuum boundary.
Outline

• 3D extended MHD equations solved by M3D-C1
• Multi-region resistive wall model of arbitrary thickness
• Comparison of thin-wall model and M3D-C1 multi-region model
• Initial 2D simulation to compare with DINA and TSC
• 3D linear RWM Analytic Benchmark
• **Full 3D simulation of a VDE in NSTX**
• Summary of 3D results
• Near-term code development plans
NSTX Shot 132859 \(\eta_w=0.00025 \)

First 3D M3D-C1 simulation of NSTX VDE with resistive vessel embedded in 3D finite element mesh.
NSTX Shot 132859 \(\eta_w = 0.00025 \)

Drift phase:

\(0 < t < 2700 \)

\(\gamma \tau_A = 0.00135 \)
Drift phase:
$0 < t < 2700$
$\gamma \tau_A = 0.00135$
NSTX Shot 132859 \(\eta_w = 0.00025 \)

Disruption phase \(2700 < t < 2950 \)

Contours of RBT show halo currents

\(\gamma \tau_A = 0.132 \)

\(\gamma \tau_A = 0.024 \)
NSTX Shot 132859 \(\eta_w = 0.00025 \)

\[\frac{\partial (R J_\varphi)}{\partial \varphi} \]

Disruption phase \(2700 < t < 2950 \)

Magnitude of the toroidal derivative of the toroidal current at one poloidal plane at the 5 times shown. Each color scale is adjusted to maximum range.

\(t = 2856 \quad t = 2868 \quad t = 2887 \quad t = 2900 \quad t = 2912 \)
NSTX Shot 132859 \(\eta_w = 0.00025 \)

Disruption phase \(2700 < t < 2950 \)

Top is magnitude of the toroidal current at one poloidal plane at the 5 times shown. Each color scale is adjusted to maximum range. Bottom is values along horizontal line of maximum current as shown.
Outline

• 3D extended MHD equations solved by M3D-C1
• Multi-region resistive wall model of arbitrary thickness
• Comparison of thin-wall model and M3D-C1 multi-region model
• Initial 2D simulation to compare with DINA and TSC
• 3D linear RWM Analytic Benchmark
• Full 3D simulation of a VDE in NSTX

• Summary of 3D results
• Near-term code development plans
NSTX Shot 132859 $\eta_w=0.00025$

Summary of first 3D M3D-C1 simulation of VDE in NSTX

- Plasma drifts downward with linear growth rate $\gamma \tau_A = 0.00135$ for entire drift phase: $0 < t < 2700 \tau_A$

- q-profile remains fixed during this phase and plasma nearly axisymmetric

- Slow $n=1$ mode with $\gamma \tau_A = 0.024$ begins to grow at $t=2800 \tau_A$ (RWM?) and this mode accelerates to $\gamma \tau_A = 0.132$ at $t=2850 \tau_A$ (external kink?)

- Wall current is initially negative (to repel plasma) and then becomes positive as plasma current decays. Halo currents begin to form at about at $t=2825 \tau_A$ when plasma makes contact with vessel.

- $n=1$ mode mostly external with $m \sim nq$. Continues to growth in amplitude until plasma disappears

- Strong shielding currents develop once plasma makes contact with vessel. (These should reduce in size with smaller value of vessel resistivity)
Outline

• 3D extended MHD equations solved by M3D-C1
• Multi-region resistive wall model of arbitrary thickness
• Comparison of thin-wall model and M3D-C1 multi-region model
• Initial 2D simulation to compare with DINA and TSC
• 3D linear RWM Analytic Benchmark
• Full 3D simulation of a VDE in NSTX
• Summary of 3D results
• Near-term code development plans
Near-term Code development plans for M3D-C1

• Fully 3D resistive wall
 • Wall resistivity to vary with θ and φ to model ports
 • Diagnostic output of 3D wall forces and halo currents
 • Study of island penetration and locking \Rightarrow disruptions?

• Impurity transport and radiation
 • Neutral and impurity transport and radiation package now being added
 • Role of impurities in thermal quench, density limit

• Kinetic closures
 • Continuum closure based in Ramos formulation (underway)
 • Demonstrated correct neoclassical resistivity, bootstrap current
 • Efficient PIC closure will enable high-accuracy EP mode studies

• Improved preconditioners
 • Present preconditioners (PC) motivated by resistive MHD physics
 • New PC will improve efficiency of 2F runs with large $\kappa_{||}$, high resolution

• Optimize for Knights Landing Processor (Cori at NERSC)
 • Implementing 3 levels of parallelism: MPI, OpenMP, vector
 • M3D-C1 one of 2 fusion codes selected for early access program NESAP