Single-n versus multiple-n simulations of Alfvénic global modes

G. Vlad1, S. Briguglio1, G. Fogaccia1, V. Fusco1, C. Di Troia1, E. Giovannozzi1, X. Wang2

1ENEA, FSN, C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma), Italy

2Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
Abstract: This work presents the results of a set of simulations of global Alfvén modes driven by an energetic particle (EP) population, with the specific aim of comparing single-n and multiple-n simulations (n being the toroidal mode number). The hybrid reduced $O(\varepsilon_0^3)$ MHD gyrokinetic code HMGC is used, retaining both fluid (wave-wave) and energetic particles non-linearities (ε_0 being the inverse aspect ratio of the torus). Note also that HMGC retains self-consistently, in the time evolution, the wave structures as modified by the EP term. Simulations with the toroidal mode numbers $1 \leq n \leq 10$ have been considered. A circular, shifted magnetic-surface equilibrium has been considered, characterized by a large aspect ratio ($\varepsilon_0=0.1$) and a parabolic safety factor profile $q(r)=q_0+(q_a-q_0)(r/a)^2$ with $q_0=1.1$ and $q_a=1.9$.

A bulk ion density profile $n_i \propto 1/q^2$, in order to have the toroidal gap radially aligned has also been assumed. The equilibrium (initial) EP distribution function has been considered to be an isotropic Maxwellian, with a radial density profile $n_H=n_{H0}\exp(-19.53(1-\psi/\psi_0)^2)$, $T_H/T_{H0}=1$, $\rho_{H0}/a=0.01$, $v_{H0}/v_{A0}=1$, $m_H/m_i=2$ (T_{H0}, ρ_{H0} and v_{A0} are the on-axis EP temperature, Larmor radius and thermal velocity, respectively, and ψ the poloidal flux function, with ψ_0 its on-axis value).

For the specific energetic particle drive considered ($n_{H0}/n_{i0}=1.75 \times 10^{-3}$), single-$n$ simulations are either stable ($n=1$), weakly unstable ($n=2,3$) or unstable ($n\geq4$), with $n=4, 5, 10$ exhibiting the larger growth-rates, while $4 \leq n \leq 7$ the largest saturated amplitudes. A variety of modes are observed (TAEs, upper and lower KTAEs, EPMs). Nevertheless, no appreciable global modification of the EP density profile is observed after saturation.

On the contrary, the multi-n nonlinear simulation exhibits larger growth-rates and higher saturation amplitudes on all the toroidal spectral components considered, and, as a consequence, it results in a conspicuous broadening of the EP radial density profile at saturation, thus showing an enhanced radial transport w.r.t. the single-n simulations. Non-linear coupling between different toroidal Fourier modes results both from the MHD terms and from the Energetic Particles.
• Thermal (core) plasma:
 – described by reduced $O(\varepsilon_0^3)$ visco-resistive MHD equations in the limit of $\beta=0$ ($\varepsilon_0 \equiv a/R_0$) ⇒ equilibria with shifted circular magnetic surfaces only can be investigated
 – MHD fields: ψ, ϕ (poloidal magnetic flux function and electrostatic potential)
• Energetic-ion population:
 – described by the non-linear gyrokinetic Vlasov equation, expanded up to order $O(\varepsilon)$ and $O(\varepsilon_B)$, with $\varepsilon \sim \rho_H/L_n$
 the gyrokinetic ordering parameter and $\varepsilon_B \sim \rho_H/L_B < \varepsilon$, in the $k_\perp \rho_H << 1$ limit (guiding-center approximation)
 energetic particle pressure: Π_\perp, Π_\parallel
 – fully retaining magnetic drift orbit widths
 – solved by particle-in-cell (PIC) techniques.
 k_\perp: perpendicular component of the wave vector
 ρ_H: energetic ion Larmor radius
 L_n, L_B: the equilibrium density and magnetic field scale lengths
• Toroidal coordinates system (r, θ, φ)
Equilibrium:

- \(\varepsilon_0 \equiv a / R_0 = 0.1; \ T_H / T_{H_0} = 1, \ \rho_{H_0} / a = 0.01, \ \nu_{H_0} / \nu_A = 1, \ m_H / m_i = 2; \ n_{H_0} / n_{i0} = 1.75 \times 10^{-3} \)
- \(q(r) = q_0 + (q_a - q_0)(r/a)^2 \) with \(q_0 = 1.1 \) and \(q_a = 1.9 \)
- \(n_i \propto 1/q^2 \)
- \(n_H = n_{H_0} \exp(-19.53 (1-\psi/\psi_0)^2)) \); EP equilibrium distribution function \(F_{H,\text{eq}} \) is isotropic Maxwellian

\[s = \sqrt{\left| \psi_{\text{eq}} - \psi_0 \right| / \left| \psi_{\text{edge}} - \psi_0 \right|} \]

\(\psi_{\text{eq}} \) the equilibrium magnetic poloidal flux function, and \(\psi_0 \) and \(\psi_{\text{edge}} \) its values, at the magnetic axis and at the edge, respectively.

Fourier space for perturbed quantities: \((m,n)\) and \((-m,-n)\) modes included in the simulations.
Single-\(n \) simulations. Toroidal mode numbers \(1 \leq n \leq 10; \ n=0 \) not evolved; total (kinetic +magnetic) energy for each toroidal mode number \(n \); growth rate

\[
W_{\text{tot}} = W_{\text{kin}} + W_{\text{mag}}
\]

- \(n=1 \) is stable; \(n=4, 5, 10 \) have higher linear growth rate
- very weak broadening of the global (overall velocity space) EP radial density profile at saturation is observed in single-\(n \) simulation for \(n=4 \); broadening for \(5 \leq n \leq 7 \) is barely appreciable.
Single-n simulations. Toroidal mode numbers $1 \leq n \leq 10$, frequency spectra of the e.s. potential $\varphi(r, \omega)$, $t/\tau_{A0}=120$
Single-\(n\) simulations. Toroidal mode numbers \(1 \leq n \leq 10\), frequency spectra of the e.s. potential \(\varphi(r, \omega)\), \(t/\tau_{A0} = 240\)
Single-\(n\) simulations. Toroidal mode numbers \(1 \leq n \leq 10\), frequency spectra of the e.s. potential \(\varphi(r, \omega)\), \(t/\tau_A = 360\)
Single-n simulations. Toroidal mode numbers $1 \leq n \leq 10$, spectrograms of the e.s. potential $\phi(r,\omega)$
Single-n simulations. Toroidal mode numbers $1 \leq n \leq 10$, linear eigenfunctions of the e.s. potential $\varphi_{m,n}(r)$, and wave-particle power exchange in (u, μ) plane (u: EP parallel velocity; μ: EP magnetic moment)
Multiple-n simulation

Toroidal mode numbers $1 \leq n \leq 10$

- **Standard** picture:
 1. strongest modes saturate first, because of non-linear (NL) energetic particle (EP) terms (e.g., flattening of EP radial density profile, at least for the resonant EP fraction);
 2. sub-dominant modes can, on turn, be driven unstable (or more unstable) because of the modifications to the EP distribution induced by the saturation of the dominant modes

- **Novel** observations from these set of simulations:
 1. NL mode-mode coupling from MHD terms, or mediated by EP term, strongly drives sub-dominant modes already during the linear growth phase of the dominant modes;
 2. sub-dominant modes driven non-linearly have field (ψ, ϕ) radial profiles and real frequencies substantially different from linearly unstable, single-n modes;
 3. all the toroidal modes saturate almost simultaneously, inducing an enhanced EP transport (enhanced w.r.t. the single-n simulations);
 4. On a longer time scale, after saturation of the faster modes, other subdominant modes can, in turn, be driven unstable (or more unstable) because of the modifications to the EP distribution (as #2 above, not investigated here…)
Multiple-\(n \) simulation. Toroidal mode numbers \(1 \leq n \leq 10; \ n=0 \) not evolved

Stable or weakly instable low-\(n \) modes (\(n=1,2,3 \)) are non-linearly driven by dominant modes, during the linear growth phase of their time evolution
Multiple-\(n \) simulation. Frequency spectra of subdominant \(n \) are strongly modified w.r.t. the single-\(n \) simulations, \(\tau A_0 = 150 \).
Multiple-n simulation. Eigenfunctions of subdominant n are strongly modified w.r.t. the single-n simulations, $t/\tau_{A0}=150$.

10^{-15} \quad 10^{-13} \quad 10^{-11} \quad 10^{-9} \quad 10^{-7} \quad 10^{-5} \quad 0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300 \quad 350

- $n=1$
- $n=2$
- $n=3$
- $n=4$
- $n=5$
- $n=6$
- $n=7$
- $n=8$
- $n=9$
- $n=10$

- sum_n1_multiple_n_tot_caso13tris
- sum_n2_multiple_n_tot_caso13tris
- sum_n3_multiple_n_tot_caso13tris
- sum_n4_multiple_n_tot_caso13tris
- sum_n5_multiple_n_tot_caso13tris
- sum_n6_multiple_n_tot_caso13tris
- sum_n7_multiple_n_tot_caso13tris
- sum_n8_multiple_n_tot_caso13tris
- sum_n9_multiple_n_tot_caso13tris
- sum_n10_multiple_n_tot_caso13tris
Multiple-\(n \) simulation. Both MHD non-linearities and mode coupling through EP non-linearities are important.

- In the multiple-\(n \) simulation, EP drive only (blue curves) already gives NL coupling (see, e.g., the \(n=1 \) case, which, for the single-\(n \) simulation, i.e. with only EP drive as obtained by fluctuating fields with only \(n=1 \) components, is stable);
- in the multiple-\(n \) simulation with EP drive plus fluid non-linearities (red curves), fluid non-linearities anticipate a bit in time, without changing appreciably the growth-rate, the growing for the sub-dominant modes (not for the dominant one, \(n=4 \); the other stronger one, \(n=10 \), is almost unchanged during its linear phase, but it is non-linearly driven at higher overshooting after the first roll over), thus typically making the individual \(n \) components to overshoot more compared with the multiple-\(n \) simulation with only EP non-linearities.
Multiple-\(n\) simulation. EP radial transport enhanced w.r.t. single-\(n\) simulations when fluid+EP non-linearities are considered.

Multiple-\(n\) simulation including both MHD and EP NLs results in enhanced EP radial transport (w.r.t. single-\(n\) simulations).
Mode coupling through the EP term (1).

Hybrid reduced $O(\varepsilon_0^3)$ MHD equations (HMGC) (Briguglio et al., Phys. Plasmas 2, 3711 (1995); Wang et al., Phys. Plasmas 18, 052504 (2011)).

\[
\frac{\delta \psi}{\delta t} = \frac{R^2}{R_0} \nabla \psi \times \nabla \varphi \cdot \nabla U + \frac{B_0}{R_0} \frac{\partial U}{\partial \varphi} + \frac{c^2}{4\pi} \Delta^* \psi + O(\varepsilon^4 v_A B_0),
\]

\[
\dot{\rho} \left(\frac{D}{Dt} + \frac{2}{R_0} \frac{\partial U}{\partial Z} \right) \nabla^2 U + \nabla \left(\frac{D}{Dt} + \frac{1}{R_0} \frac{\partial U}{\partial Z} \right) \nabla U = \frac{1}{4\pi} \mathbf{B} \cdot \nabla \Delta^* \psi + \frac{1}{R_0} \nabla \left[R^2 (\nabla P + \nabla \cdot \mathbf{\Pi}_H) \times \nabla \varphi \right]
\]

\[
+ O(\varepsilon^4 \rho \frac{v_A^2}{a^2}),
\]

\[
\Pi_s(t, x) = \frac{1}{m_s^2} \int d\bar{Z} D_{Z_s} \bar{Z} \bar{F}_s(t, \bar{R}, \bar{M}, \bar{V}) \times \left[\frac{\Omega_s \bar{M}}{m_s} \mathbf{I} + \mathbf{b} \mathbf{b} \left(\bar{V}^2 - \frac{\Omega_s \bar{M}}{m_s} \right) \right] \delta (x - \bar{R})
\]

\[a_s = (e_s/c)(R_0/R)\psi; \quad U = -c\phi/B_0;\]

\[\psi\] is the magnetic stream function; \[\phi\] is the e.s. potential; “s” stay for EP species, thermal ions, ...

\[Z = (\mathbf{R}, M, V)\] are the gyrocenter coordinates, \[dZ/dt\] the phase-space velocities, \[(dZ/dt)_{\text{pert}}\] the perturbed ones; \[F_s;_{\text{eq}}\] the equilibrium distribution function of the “s” EP species.
Mode coupling through the EP term (2).

Mode coupling through the EP term \(\nabla \cdot \Pi_H \) means that a toroidal mode number “\(n \)” gets a contribution from quantities related to the EPs characterized by modes “\(n_1 \)” and “\(n_2 \)” such that:

\[
n = n_1 + n_2 \quad \text{(three waves scheme)}
\]

These kind of terms are indeed present, as can be recognized schematically by the following:

\[
\Pi_H \propto \delta F_H:
\]

\[
\left(\frac{\partial}{\partial t} + \frac{dZ^i}{dt} \frac{\partial}{\partial Z^i} \right) \delta \tilde{F}_H = - \left(\frac{dZ^i}{dt} \right)_{\text{pert}} \frac{\partial}{\partial Z^i} \tilde{F}_{H;\text{eq}}
\]

After formally splitting the generalized velocities in the l.h.s. in unperturbed “unpert” and perturbed “pert” ones:

\[
\left[\frac{\partial}{\partial t} + \left(\frac{dZ^i}{dt} \right)_{\text{unpert}} \frac{\partial}{\partial Z^i} \right] \delta \tilde{F}_H = - \left(\frac{dZ^i}{dt} \right)_{\text{pert}} \frac{\partial}{\partial Z^i} \tilde{F}_{H;\text{eq}} - \left(\frac{dZ^i}{dt} \right)_{\text{pert}} \frac{\partial}{\partial Z^i} \delta \tilde{F}_H \quad \text{F.T.} \quad \sum_{n_1}(dZ^i/dt)_{n_1}
\]

And passing to toroidal Fourier components (equilibrium: “\(n=0 \)”; perturbed: “\(n \)”):

\[
\left[\frac{\partial}{\partial t} + \left(\frac{dZ^i}{dt} \right)_0 \frac{\partial}{\partial Z^i} \right] \delta \tilde{F}_{H;n} = - \left(\frac{dZ^i}{dt} \right)_n \frac{\partial}{\partial Z^i} \tilde{F}_{H0} - \Sigma_{\tilde{n}} \left(\frac{dZ^i}{dt} \right)_{n-\tilde{n}} \frac{\partial}{\partial Z^i} \delta \tilde{F}_{H;\tilde{n}}
\]

From the last, convolution term, it can arise NL coupling between different \(n \)’s through the EP term.
Conclusions.

- Comparison between single-\(n\) and multiple-\(n\) simulations of Alfvénic modes has been performed, using the HMGC code; multiple-\(n\) simulations with the toroidal mode numbers \(1 \leq n \leq 10\) have been considered.
- In single-\(n\) simulations, the equilibrium considered (circular cross section, low inverse aspect ratio, \(\varepsilon_0 = 0.1\)), in presence of a Maxwellian EP population, result as either stable \((n=1)\), weakly unstable \((n=2, 3)\) or unstable \((n \geq 4)\), with \(n=4, 5, 10\) exhibiting the larger growth-rates; a variety of modes are observed (TAEs, upper and lower KTAEs, EPMs). Weak or negligible EPs radial transport is observed at saturation, for all the toroidal mode numbers considered.
- In multiple-\(n\) simulation, NL mode-mode coupling from MHD terms and mediated by EP term (three wave coupling), strongly drives sub-dominant modes already during the linear growth phase of the dominant modes; radial profiles of e.m. fields \((\psi, \phi)\) and real frequencies are substantially different from linearly unstable, single-\(n\) modes; all the toroidal modes saturate almost simultaneously, inducing enhanced EP transport (w.r.t. the single-\(n\) simulations).

Acknowledgements.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Part of the computing resources and the related technical support used for this work have been provided by the EUROfusion High Performance Computer (Marconi-Fusion) and part by the CRESCO/ENEAGRID High Performance Computing infrastructure and its staff.